2023
Lapalu N, Lamothe L, Petit Y, Genissel A, Delude C, Feurtey A, Abraham LN, Smith D, King R, Renwick A, Appertet M, Sucher J, Steindorff AS, Goodwin SB, Grigoriev IV, Hane J, Rudd J, Stukenbrock E, Croll D, Scalliet G, Lebrun MH. Improved gene annotation of the fungal wheat pathogen Zymoseptoria tritici based on combined Iso-Seq and RNA-Seq evidence. bioRxiv 2023.04.26.537486 [DOI]
Langlands-Perry C, Pitarch A, Lapalu N, Cuenin M, Bergez C, Noly A, Amezrou R, Gélisse S, Barrachina C, Parrinello H, Suffert F, Valade R, Marcel TC. Quantitative and qualitative plant-pathogen interactions call upon similar pathogenicity genes with a spectrum of effects. Front Plant Sci. 2023 May 10;14:1128546. [DOI]
Amezrou R, Audéon C, Compain J, Gélisse S, Ducasse A, Saintenac C, Lapalu N, Louet C, Orford S, Croll D, Amselem J, Fillinger S, Marcel TC. A secreted protease-like protein in Zymoseptoria tritici is responsible for avirulence on Stb9 resistance gene in wheat. PLoS Pathog. 2023 May 12;19(5):e1011376. [DOI]
2022
Lapalu N, Simon A, Demenou B, Paumier D, Guillot MP, Gout L, Suffert F, Valade R. Complete Genome Sequences of Septoria linicola: A Resource for Studying a Damaging Flax Pathogen. Mol Plant Microbe Interact. 2022 Dec 20:MPMI09220185A. [DOI]
Amezrou, R., Ducasse, A., Compain, J., Lapalu, N., Pitarch, A., Dupont, L., Confais, J., Goyeau, H., Kema, G. H. J., Croll, D., Amselem, J., Sanchez-Vallet, A., and Marcel, T. C. 2022. Whole-genome sequencing reveals diverse mechanisms underlying quantitative pathogenicity and host adaptation in a fungal plant pathogen. bioRxiv. :2022.12.23.521735 [DOI]
Simon A, Mercier A, Gladieux P, Poinssot B, Walker AS, Viaud V. Botrytis cinerea strains infecting grapevine and tomato display contrasted repertoires of accessory chromosomes, transposons and small RNAs. Peer Community Journal, Volume 2 (2022), article no. e83 - 10.24072/pcjournal.211 [DOI]. bioRxiv 2022.03.07.483234 [DOI]
2021
Clairet C, Lapalu N, Simon A, Soyer JA, Viaud M, Zehraoui E, Dalmais B, Fudal I, Ponts N. Nucleosome patterns in four plant pathogenic fungi with contrasted genome structures. bioRxiv 2021.04.16.439968 [DOI] [PCI Genomics]
Ribeaucourt D, Saker S, Navarro D, Bissaro B, Drula E, Correia LO, Haon M, Grisel S, Lapalu N, Henrissat B, O'Connell RJ, Lambert F, Lafond M, Berrin JG. Identification of Copper-Containing Oxidoreductases in the Secretomes of Three Colletotrichum Species with a Focus on Copper Radical Oxidases for the Biocatalytic Production of Fatty Aldehydes. Appl Environ Microbiol. 2021 Nov [DOI]
Soyer JL, Clairet C, Gay EJ, Lapalu N, Rouxel T, Stukenbrock EH, Fudal I. Genome-wide mapping of histone modifications during axenic growth in two species of Leptosphaeria maculans showing contrasting genomic organization. Chromosome Res. 2021 Jun;29(2):219-236. Epub 2021 May 21.[DOI]
Mercier A, Simon A, Lapalu N, Giraud T, Bardin M, Walker AS, Viaud M, Gladieux P. Population Genomics Reveals Molecular Determinants of Specialization to Tomato in the Polyphagous Fungal Pathogen Botrytis cinerea. Phytopathology. 2021 Apr 8. Epub ahead of print. [DOI] [BioRXIV]
Gay EJ, Soyer JL, Lapalu N, Linglin J, Fudal I, Da Silva C, Wincker P, Aury JM, Cruaud C, Levrel A, Lemoine J, Delourme R, Rouxel T, Balesdent MH. Large-scale transcriptomics to dissect 2 years of the life of a fungal phytopathogen interacting with its host plant. BMC Biol. 2021 Mar 23;19(1):55. [DOI]
top of page
2020
Gazengel K, Lebreton L, Lapalu N, Amselem J, Guillerm-Erckelboudt AY, Tagu D, Daval S. pH effect on strain-specific transcriptomes of the take-all fungus. PLoS One. 2020 Jul 30;15(7):e0236429. [DOI]
top of page
2019
de Vallée A, Bally P, Bruel C, Chandat L, Choquer M, Dieryckx C, Dupuy JW, Kaiser S, Latorse MP, Loisel E, Mey G, Morgant G, Rascle C, Schumacher J, Simon A, Souibgui E, Viaud M, Villalba F, Poussereau N (2019). A Similar Secretome Disturbance as a Hallmark of Non-pathogenic Botrytis cinerea ATMT-Mutants? Frontiers in Microbiology. [DOI]
Kilani J, Davanture M, Simon A, Zivy M, Fillinger S (2019). Comparative quantitative proteomics of osmotic signal transduction mutants in Botrytis cinerea explain mutant phenotypes and highlight interaction with cAMP and Ca2+ signalling pathways. J Proteomics. 2019 Nov 13;212:103580. [DOI]
Porquier A, Moraga J, Morgant G, Dalmais B, Simon A, Sghyer H, Collado IG, Viaud M. (2019). Botcinic acid biosynthesis in Botrytis cinerea relies on a subtelomeric gene cluster surrounded by relics of transposons and is regulated by the Zn2Cys6 transcription factor BcBoa13. Current Genetics. DOI: 10.1007/s00294-019-00952-4 [DOI]
top of page
2018
Dutreux F, Da Silva C, d'Agata L, Couloux A, Gay EJ, Istace B, Lapalu N, Lemainque A, Linglin J, Noel B, Wincker P, Cruaud C, Rouxel T, Balesdent MH, Aury JM. De novo assembly and annotation of three Leptosphaeria genomes using Oxford Nanopore MinION sequencing. Sci Data. 2018 Nov 6;5:180235. [DOI]
Robin GP, Kleemann J, Neumann U, Cabre L, Dallery J-F, Lapalu N, O’Connell RJ. (2018). Subcellular localization screening of Colletotrichum higginsianum effector candidates identifies fungal proteins targeted to plant peroxisomes, Golgi bodies and microtubules. Frontiers in Plant Science, 02 May 2018 [DOI]
Izquierdo-Bueno I, González-Rodríguez VE, Simon A, Dalmais B, Pradier JM, Le Pêcheur P, Mercier A, Walker AS, Garrido C, Collado IG, Viaud M. (2018) Biosynthesis of abscisic acid in fungi: Identification of a sesquiterpene cyclase as the key enzyme in Botrytis cinerea. Environ Microbiol. 2018 Apr 30. [DOI]
top of page
2017
J.-F. Dallery, N. Lapalu, A. Zampounis, S. Pigné, I. Luyten, J. Amselem, A. H. J. Wittenberg, S. Zhou, M. V. de Queiroz, G. P. Robin, A. Auger, M. Hainaut, B. Henrissat, K.-T. Kim, Y.-H. Lee, O. Lespinet, D. C. Schwartz, M. R. Thon, and R. J. O’Connell, (2017), Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters, BMC Genomics, vol. 18, no. 1, p. 667 [DOI]
Brandhoff B, Simon A, Dornieden A, Schumacher J. (2017). Regulation of conidiation in Botrytis cinerea involves the light-responsive transcriptional regulators BcLTF3 and BcREG1. Curr Genet. 2017 Apr 5. [DOI]
Zhong Z, Marcel TC, Hartmann FE, Ma X, Plissonneau C, Zala M, Ducasse A, Confais J, Compain J, Lapalu N, Amselem J, McDonald BA, Croll D, Palma-Guerrero J. A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene. New Phytol. 2017 Apr;214(2):619-631. [DOI]
Adam-Blondon AF, Alaux M, Durand S, Letellier T, Merceron G, Mohellibi N, Pommier C, Steinbach D, Alfama F, Amselem J, Charruaud D, Choisne N, Flores R, Guerche C, Jamilloux V, Kimmel E, Lapalu N, Loaec M, Michotey C, Quesneville H. Mining Plant Genomic and Genetic Data Using the GnpIS Information System. Methods Mol Biol. 2017;1533:103-117. [DOI]
top of page
2016
Porquier A, Morgant G, Moraga J, Dalmais B, Luyten I, Simon A, Pradier JM, Amselem J, Collado IG, Viaud M. (2016). The botrydial biosynthetic gene cluster of Botrytis cinerea displays a bipartite genomic structure and is positively regulated by the putative Zn(II)2Cys6 transcription factor BcBot6. Fungal Genet Biol. 2016 Oct 6. pii: S1087-1845(16)30111-6. [DOI]
Cohrs KC, Simon A, Viaud M, Schumacher J. (2016). Light governs asexual differentiation in the grey mould fungus Botrytis cinerea via the putative transcription factor BcLTF2. Environ Microbiol. 2016 Jun 27. [DOI]
Viaud M, Schumacher J, Porquier A, Simon A. (2016). Regulation of secondary metabolism in the grey mould fungus Botrytis cinerea. In : “Host - Pathogen Interaction: Microbial Metabolism, Pathogenicity and Antiinfectives, Part B: Adaptation of microbial metabolism in host/fungus-interactions”. G Unden, E Thines & A Schüffler eds. Wiley-Blackwell. [link]
Zhang L, Lubbers RJ, Simon A, Stassen JH, Vargas Ribera PR, Viaud M, van Kan JA. (2016). A novel Zn2 Cys6 transcription factor BcGaaR regulates D-galacturonic acid utilization in Botrytis cinerea. Mol Microbiol. 2016 Apr;100(2):247-62. [DOI]
top of page