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Some reasons why the latent period should not always be
considered constant over the course of a plant disease
epidemic
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The latent period is a crucial life history trait, particularly for polycyclic plant diseases, because it determines how
many complete infection cycles could theoretically occur during an epidemic. Experiments in controlled conditions are
generally used to assess pathogenicity and host susceptibility, and also provide the opportunity to measure the distribu-
tion of latent periods in epidemiological systems. Once estimated for one or several pairs of host-pathogen genotypes,
the mean value of this trait is usually considered to be fixed and is often used ‘as is’ in models. This review contends
that the latent period can display non-negligible variability over the course of a disease epidemic, and that this variabil-
ity has multiple sources, some of which have complex, antagonistic impacts. Arguments are developed for four sources
of variation challenging the assumption that the latent period remains constant: (i) daily fluctuations in host tempera-
ture (or other organ—environment factors); (ii) nature of inoculum; (iii) host stage or age of host tissues; and (iv)
intrapopulation competition and selection for aggressiveness traits. The review is focused on the wheat pathogen
Zymoseptoria tritici, making use of empirical datasets collected during the first author’s research projects and a tar-
geted literature review. Such empirical epidemiological knowledge is potentially important for epidemiological mod-
ellers. While some studies have demonstrated that the distribution of latent periods around the mean value has
consequences for epidemiological dynamics, it is shown here that it might also be important for modellers to account
for changes in this mean value during an epidemic. These results may be critical for improving epidemic forecasting.
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Introduction

The latent period is defined as ‘the length of time
between the start of the infection process by a unit of
inoculum and the start of production of infectious units’
(Madden et al., 2007). It contributes to the generation
time of the pathogen, i.e. the length of time between suc-
cessive infections in a transmission chain, analogous to
the age of reproductive maturity of nonparasitic organ-
isms. The importance of the latent period for under-
standing and predicting pathogen development has long
been recognized in plant disease epidemiology (van der
Plank, 1963; Zadoks, 1972). It is a crucial life history
trait and component of aggressiveness (Lannou, 2012),
especially for polycyclic diseases, because it is one of the
major determinants of the number of complete infection
cycles that could theoretically occur during an epidemic
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in a single season, which in turn affects the final intensity
of the epidemic. This view is an over-simplification in
the case of pathogens for which disease cycles overlap.
Other parameters (infection efficiency, infectious period,
sporulation intensity) are also important in the adaptive
value of a pathogen species and in the predictability of
the disease dynamics, but the focus here is on the latent
period because of its significant variation within epi-
demics caused by pathogens such as Zymoseptoria tritici
(septoria tritici blotch of wheat). Some of the factors that
drive temporal changes in the latent period vary system-
atically, potentially allowing for accurate predictions of
variation in the latent period, and in the resulting epi-
demic dynamics, to be made.

The predictability of disease dynamics depends not
only on the ability to assess accurately the mean length
of the latent period, but also its variability (Cunniffe
et al., 2012; Thompson et al., 2016). Ferrandino (2012)
clearly showed that the simple use of a population aver-
age for the latent period, and also for the infectious
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period (‘the length of time between the start of produc-
tion of infectious units and the end of production of
infectious units’; Madden et al., 2007) is problematic.
Using a theoretical model, it was demonstrated that the
time course of a single annual epidemic does not only
depend on the average values of the latent and infectious
periods, but also on the variance in these quantities
about their respective means and the covariance between
them. This work was followed up by a more detailed
analysis showing how the reproduction curves character-
izing the production of progeny impact on the speed of
an epidemic (Ferrandino, 2013).

Compartmental models used for simulating plant dis-
ease epidemics (Madden et al., 2007) often include an
exposed compartment, containing hosts that are in a
latent stage (infected but not yet infectious). The length
of time that infected hosts spend in this compartment is
usually assumed to be exponentially distributed, although
other distributions (e.g. gamma distributions) have also
been considered in compartmental models (Cunniffe
et al., 2012; Thompson et al., 2016). These distributions
are usually assumed to account for random variation
between hosts, rather than systematic differences in
latent periods due to e.g. interactions between a patho-
gen genotype and a host genotype (Viljanen-Rollinson
et al., 2005). The mean value of the latent period is also
usually assumed to remain constant throughout an epi-
demic. One exception is the model of citrus greening dis-
ease by Parry ef al. (2014), in which the mean latent
period is assumed to oscillate.

In practice, the length of the latent period changes
based on a number of factors. From experimental data,
three origins of variability have been identified: (i) experi-
mental uncertainty in the assessment (measurement errors
and biases); (ii) phenotypic heterogeneity between individ-
uals within a population (interindividual variance, due for
instance to the inherent range of virulence or aggressive-
ness within the pathogen population); and (iii) variation
in the conditions of disease expression, including those
due to environmentally induced changes (phenotypic plas-
ticity, whose expression can be amplified for instance by
somatic differences in host tissue or differences in micro-
climate within the plant canopy). Many experimental
studies in plant pathology have investigated variations in
the latent period with pathogen or host genotype, or its
plasticity in response to climatic factors, such as tempera-
ture and humidity (e.g. Shaw, 1990; Davis & Fitt, 1994).
Such approaches are relevant, because these factors lie at
the corners of the epidemiological triangle (host, patho-
gen, environment; Zadoks, 1972). Most of these studies
focused on a mean latent period with statistical features
such as standard error (related to the definition of latent
period that is used; see below) in order to reduce the
uncertainty of the measure, but rarely on the extrinsic
variance, i.e. not due to measurement biases, but due to
the interindividual variability or the expression of pheno-
typic plasticity. Pariaud et al. (2012) showed that, even in
a clonal lineage population (e.g. Puccinia triticina), differ-
ences can exist in the latent period within the same

pathotypes (pools of individuals with the same combina-
tion of qualitative virulence factors).

There are few empirical data about the time periods
over which the latent period of a plant pathogen popula-
tion changes. However, changes have been detected over
pluriannual scales in some cases, for example in poplar
rust (Pinon & Frey, 2005). Focusing on soilborne plant
pathogens, Leclerc ez al. (2014) also noticed that there is
little information about how the incubation period (the
time between infection and symptom expression) varies
temporally in a pathogen population. Interestingly, in
that study, the latent period is fixed at zero. A similar
observation could be made for the latent period — very
few studies consider the possibility that the latent period
of a pathogen population may display variability during
an annual epidemic.

The goal here was to highlight key sources of short-
term variability in the latent period that cause the length
of the latent period to vary within a single epidemic sea-
son. To this end, four sources of variability in the devel-
opment of Z. tritici are considered, making use of
empirical datasets collected during the first author’s own
research projects and also a targeted literature review.
This fungal disease is particularly suitable for this analysis
because the effects of several factors are now well docu-
mented. Zymoseptoria tritici is a polycyclic, heterothallic
pathogen reproducing both sexually and asexually, result-
ing in infections initiated by two types of spores (as-
cospores and pycnidiospores), with relative contributions
to the epidemic that change over the course of the season
(Suffert & Sache, 2011). The pathogen population dis-
plays a high degree of genetic diversity and there may be
considerable phenotypic variability in the latent period
between strains (Morais et al., 2015). Wheat has a long
growth cycle and infections occur from early autumn to
late spring, under the influence of heterogeneous environ-
mental selective pressures driven by abiotic conditions
such as temperature (Lovell et al., 2004), but also biotic
conditions such as the physiological stage of wheat or its
fertilization regime (Robert et al., 2005). As septoria trit-
ici blotch epidemics are polycyclic and result from the
integration of many overlapping infection cycles, the
latent period is a crucial fitness trait. The latent period is
long, facilitating the quantification of any differences by
in planta experiments and reducing uncertainty in those
measurements. Moreover, it may display signs of local
adaptation to climatic conditions (Suffert et al., 2015).
The four drivers of variability in the latent period consid-
ered here are described below, where it is also demon-
strated that accounting for such variability can change
pathogen dynamics as predicted by mathematical models.

Operational definitions of the latent period can
be inconsistent

The latent period is regularly measured in conflicting
ways by different plant disease experimenters. This con-
tributes to the variability in the published literature, and
makes it impossible to directly compare results. Aligning
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experimental procedures to allow for direct comparison
between experiments might be assumed to be an impor-
tant first step, and would be advisable in experiments that
are similar to each other. However, complete homoge-
nization is neither possible nor desirable. For example,
certain definitions are better adapted than others to par-
ticular experimental setups because they make it possible
to overcome methodological constraints. The latent per-
iod for septoria tritici blotch is usually estimated at the
scale of a lesion, as the time between inoculation and the
appearance of the first pycnidium (Shearer & Zadoks,
1972) or, for the sake of convenience, 5% of the final
number of pycnidia or 5% of the maximum percentage of
area covered by pycnidia (Suffert et al., 2013). Neverthe-
less, when several lesions rather than a single lesion are
considered, particularly when methodological constraints
make it necessary (e.g. impossibility of replicating individ-
ual inoculation with a given Z. tritici genotype using the
ascosporic form, contrary to the conidial form; Morais
et al., 2015), the latent period is often estimated at the
scale of a leaf, as the time between inoculation and the
appearance of half of the eventual number of sporulating
lesions (Shaw, 1990; Lovell et al., 2004). Studies are often
conducted by modellers who ‘search the literature’ for
experimental parameters to use. It is therefore recom-
mended that the operational definition used in a particular
experiment is considered by modellers before experimen-
tal data are used to infer model parameters.

The latent period can vary with fluctuations in
host temperature

The development of plant pathogens responds strongly
to the temperature of the surrounding environment. The
effects of temperature are so well recognized in plant epi-
demiology that linear thermal time (referring to the accu-
mulation of degrees above a given base temperature over
a specified period of time) is widely preferred over physi-
cal time for assessing and modelling disease develop-
ment. This preference is frequently seen in studies of
septoria tritici blotch. Consequently, the latent period is
usually expressed in degree-days rather than as a number
of physical days. This accounts, for example, for the
decrease in the latent period of Z. tritici estimated as a
number of days over the spring epidemic period: a 350
degree-day latent period (with a base temperature of
—2.4 °C; Lovell et al., 2004) typically corresponds on
average to 33 days in early spring (April) but only
22 days in late spring (June) in France (average monthly
temperature in Poissy, Yvelines; see https://en.climate-da
ta.org). However, taking into account the impact of tem-
perature in this way is not completely adequate, because
relationships between temperature and the efficiency or
duration of a given epidemiological process are usually
nonlinear and often not even monotonic. Consequently,
the latent period, while assessed using thermal time,
should not be considered constant in time, particularly if
the time-step used for the calculation is large (e.g. daily),
for at least two reasons.
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First, thermal time is usually calculated from air tem-
perature, whereas the development of foliar fungal patho-
gens, including Z. tritici, reacts more directly to leaf
temperature (the temperature actually perceived by the
fungus), which can be very different from air temperature
(Bernard et al., 2013). Leaf temperature is more difficult
to measure than air temperature, but it can be estimated
indirectly from soil-vegetation-atmosphere transfer (SVAT)
models, including data recorded at standard weather
stations (Xiao et al., 2006). Note that, while the focus
here is on leaf temperature, due to its relevance to
epidemics caused by Z. tritici, other environment—organ
factors are also likely to apply to other pathogens, such
as root- and soilborne pathogens.

Second, the latent period is usually assessed under fluc-
tuating temperature regimes, with a thermal scale based
on the accumulation of daily mean temperatures. The
effects of diurnal fluctuations are, therefore, not taken
into account. Bernard (2012) established the impact of
two patterns of leaf temperature variation, in which the
mean temperatures were equal (18 °C) but daily temper-
ature ranges differed (+2 and +5 °C), on the latent per-
iod of Z. tritici: the larger temperature range increased
the latent period by 1.3 days on average. Similar results
have been obtained for other plant pathogens (Scherm &
van Bruggen, 1994). The differences in pathogen devel-
opment between constant and fluctuating environments
are partly due to ‘rate summation’ or the Kaufmann
effect, a mathematical consequence of the nonlinear
shape of thermal performance curves (TPCs). The length
of the latent period under fluctuating temperatures can
be predicted by integrating constant-temperature devel-
opmental rates over the fluctuating temperature regime
(Xu, 1996; Shakya et al., 2015),

y
ﬂw:/mnma
0

where S is the accumulated development over the time
interval [0, y], T(¢) is the temperature as a function of
time ¢ and R(T(¢)) is the development rate as a function
of temperature. S is dimensionless and defined as zero
initially and one at the completion of a process (i.e.
appearance of the first pycnidia).

Finally, degree-hours should be preferred over degree-
days post-inoculation (ddpi) once the TPC of the latent
period is available.

The mean TPC of the latent period for Z. tritici was
established empirically, with a limited number of fungal
isolates, in natural (Shaw, 1990) and controlled (Bernard
et al., 2013) conditions. The variability in the latent per-
iod between pathogen populations of different geo-
graphic origins has never before been characterized in
detail. The latent period TPCs presented in Figure la
were obtained from two groups of nine Z. tritici samples
collected from two regions of France with different cli-
mates (Brittany and Burgundy). The thermal optimum
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Figure 1 lllustration of four sources of variability in the latent period (expressed in days post-inoculation [dpi] or in degree-days post-inoculation
[ddpi] with a base temperature of 0 °C) of the wheat pathogen Zymoseptoria tritici over the course of an annual epidemic. The experiments and
datasets underlying panels (a)-(d) are independent. The latent period in panels (a), (c) and (d) is the time between inoculation and the appearance
of 5% of the maximum area covered by pycnidia, calculated by fitting a Gompertz growth curve to experimental data as described by Suffert et al.
(2013). In panel (b) the latent period was characterized as the time between inoculation and the appearance of 5% of the maximum number of
pycnidia in each individual lesion, as described by Morais et al. (2015). (a) Effect of the daily mean wheat leaf temperature on the latent period of
two groups of nine Z. tritici populations (2 x 9 isolates collected from cv. Apache in two French regions; black diamond = Dijon in Burgundy; white
diamond = Ploudaniel in Brittany) assessed after pycnidiospore inoculation on adult wheat plants. The thermal performance curve (the quadratic
y=ax’ + bx+ c, with: a=0.17, b = —6.28, /* = 0.358, optimal temperature = 18.7 °C for Dijon; and a = 0.09, b = —4.10, /* = 0.548, optimal
temperature = 22.1 °C for Ploudaniel) was adjusted using six replicates per temperature. (b) Length of the latent period of 12 Z. tritici isolates
(collected from cv. Soissons in Grignon, Paris basin, France) assessed after ascospore and pycnidiospore inoculation on adult wheat plants cv.
Apache (from Morais et al., 2015). Each point corresponds to the mean of several values for pycnidiospore inoculation (vertical bars represent the
standard deviation) and a single value for ascospore inoculation. This heterogeneity is due to the impossibility of replicating individual inoculation
with a given Z. tritici genotype using the ascosporic form, in contrast to the conidial form (Morais et al., 2015). Inclusion of replicates for the
assessment of the latent period after ascospore inoculation would have made the differences that are currently being displayed far less evident. (c)
The latent periods of two groups of nine Z. tritici populations (the same isolates as in panel (a); black diamond = Dijon in Burgundy; white

diamond = Ploudaniel in Brittany) assessed after pycnidiospore inoculation on wheat seedlings and adult wheat plants cv. Apache for five different
wheat cultivars: Apache (triangle/green diamond on-line), common to both Brittany and Burgundy; Altamira (diamond/red diamond on-line) and
Paledor (circle/yellow diamond on-line), mostly cultivated in Brittany; Arezzo (cross/blue diamond on-line) and Altigo (square/brown diamond
on-line), mostly cultivated in Burgundy. Each point represents the mean value from six replicates. The mean latent period was 298 + 41 ddpi on
seedlings and 535 + 66 ddpi on adult plants. Such differences should be taken into account carefully, especially for multifactorial modelling
purposes, as the latent period definitions were not the same because of methodological constraints: the latent period (5% of the maximum
percentage of area covered by pycnidia) was assessed for adult plants by fitting a logistic model (Suffert et al., 2013) to 17 points, but was
obtained for seedlings using raw data (5 points) without fitting a model. This difference could explain the low variance in latent period values
assessed on seedlings compared to the equivalent measurements on adult plants. (d) The mean latent period of two Z. tritici subpopulations

(2 x 15 isolates collected on seedlings cv. Soissons very early [Pi] in the epidemic and the upper leaf layers at the end of the same epidemic [Pf]),
assessed under winter (on wheat seedlings cv. Soissons at 8.9 °C) and spring (on adult plants cv. Soissons at 18.1 °C) conditions for a fixed spore
type (pycnidiospores). See Suffert et al. (2015) for further information on the interactions between the effect of plant growth stage and the effect of
temperature. Error bars represent the standard deviations.
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derived from the TPCs was <19 °C for the isolates from
Brittany and >22 °C for the isolates from Burgundy. The
effect of temperature on the latent period can differ
between pathogen populations expressing local patterns
of climatic adaptation.

The latent period is affected by the type of
inoculum: ascospores vs pycnidiospores

Models of septoria tritici blotch development considering
both ascospores and pycnidiospores in an explicit manner,
either throughout the cropping season (Eriksen et al.,
2001) or solely at the onset of the epidemic (Robert et al.,
2008), assume that the infection process after spore depo-
sition is the same for both types of spore. However,
Morais et al. (2015) showed that the latent period of
Z. tritici was significantly longer (about 60 degree-days,
i.e. 3-4 days in late spring) and more variable (standard
deviation 68.4 vs 38.0 ddpi) after infection with ascos-
pores than after infection with pycnidiospores (Fig. 1b).
This empirical result is consistent with results obtained for
other plant pathogens in studies considering the efficiency
of different types of spore without specifically focusing on
the latent period (e.g. Karolewski et al., 2002). For Z. trit-
ici, one concrete consequence of this difference is that the
mean latent period early in the epidemic, when lesions are
predominantly caused by wind-dispersed ascospores, is
typically longer than that during the spring epidemic stage,
when infections are caused mostly by splash-dispersed
pycnidiospores (Suffert & Sache, 2011). This is in contrast
to Figure 1d, in which only pycnidiospores are considered.
Hypothetical, theoretical distributions of the length of the
latent period at different stages of an epidemic, due to the
numbers of new lesions induced by different Z. tritici
spore types, results in the superimposition of two uni-
modal distributions centred around the mean latent period
value of each type of spore (Fig. 2). Note that, in the
particular example considered here, ascospore induced
infections appear earlier in the epidemic despite being
associated with a longer latent period than pycnidiospore
induced infections. This is because all primary infections
are caused by ascospores, whereas pycnidiospores only
cause secondary infections. The resulting distribution may
or may not be bimodal, depending on the relative contri-
butions of the two types of spore to the infection. The
latent period of a plant pathogen with both sexual and
asexual reproduction modes can therefore vary over the
course of an epidemic.

The Latent Period Depends On Host Stage And
Host Tissue Age

An increase in the latent period with host development is
classically observed for several plant pathogens, such as
Puccinia hordei (Parlevliet, 1975) and Puccinia stri-
iformis (Tomerlin et al., 1983). This finding is consistent
with the lack of a univocal relationship between wheat
seedling and adult plant resistance. This age-related (or
ontogenic) resistance is, for example, clearly established
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in wheat rusts: many resistance genes are expressed in
adult plants but not in seedlings (McIntosh et al., 1995).
The latent periods of two groups of Z. tritici isolates col-
lected in two climatically different regions of France
(Brittany and Burgundy) were assessed, on both seedlings
and adult plants. A large difference was found between
plants of different stages, with a mean latent period of
298 + 41 ddpi for seedlings and 535 + 66 ddpi for
adult plants (Fig. 1c). Moreover, other experimental
studies have suggested that the susceptibility of wheat tis-
sues varies with leaf layer for synchronous measurements
(i.e. on the same date) on adult plants, probably due to
differences in leaf age (interactions between the suscepti-
bility of host tissues, natural senescence and nitrogen sta-
tus; e.g. Bernard et al., 2013; Suffert et al., 2015). The
increase in the latent period length with developmental
stage (young vs adult plants), and, more generally, with
leaf age (time between leaf emergence and leaf infection),
has been investigated in detail for Puccinia arachidis
(Savary, 1987). These findings provide further support
for the contention that the latent period of a plant
pathogen can vary over the course of an epidemic.

The latent period is strain-dependent, and
therefore affected by competition within a local
pathogen population

As mentioned in the introduction, the latent period
depends on pathogen genotype. Genetic and phenotypic
variability within a local pathogen population may be
high or low, according to the inherent structure of the
population (clonality vs sexual reproduction that typi-
cally leads to high levels of variability). Locally, at the
scale of a single annual epidemic, some authors consider
average aggressiveness, and, thus, latent period, to be
stable (for a given type of spore). Suffert et al. (2015)
showed that the mean latent period of Z. #ritici pycnid-
iospores can vary during a single annual epidemic: iso-
lates collected on the upper leaf layers of wheat at the
end of an epidemic have a shorter latent period than
those collected from seedlings very early in the same
epidemic. This difference in the latent period between
strains, expressed under spring conditions (adult plants,
warm temperature) but not under winter conditions
(seedlings, cold temperature), suggested that strains with
shorter latent periods may be selected during the second
part of the epidemic (spring), when the disease is prop-
agated by the upward splash dispersal of spores,
although note the limited statistical support here
(Fig. 1d; for additional details, see Suffert et al., 2015).
During this stage of the epidemic, a short latent period
appears to be a key fitness trait conferring a competi-
tive advantage. These conclusions were corroborated by
the significant decrease in between-genotype variance
for the latent period over the course of the epidemic.
The decrease in the mean latent period of a pathogen
population is consistent with the increase in other
aggressiveness traits recorded for various fungal patho-
gens after some cycles of asexual reproduction (e.g.
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Figure 2 Proposed hypothetical distributions of the relative numbers of new lesions (on wheat plants, per m? and per week) with each latent period
length, taking into account the nature of the spores at each stage of a Zymoseptoria tritici epidemic at early stage of the epidemic in December (a),
intermediate stage of the epidemic in April (b) and late stage of the epidemic in June (c). Red dashed lines correspond to ascospore-initiated
lesions; blue/dotted on-line lines correspond to pycnidiospore-initiated lesions; solid lines are the cumulative curves. Curves were built with the
hypothesis that the mean latent period is 505 ddpi for pycnidiospore infection and 557 ddpi for ascospore infection (Morais et al., 2015). Both latent
periods are assumed here to have a gamma distribution, with a similar variance for ascospore and pycnidiospore infections (« = 23 and p = 1.3 for
ascospores, o = 11 and B = 1.3 for pycnidiospores). The relative heights of the curves are not derived from experimental values, because such
experiments do not exist, and should be considered as an approximate order of magnitude. This order of magnitude is inspired by the relative
importance of the two types of spores to the epidemic over the growing season found in different studies based on experimental approaches
(Suffert & Sache, 2011; Morais et al., 2015), theoretical approaches (Eriksen et al., 2001) or combined approaches (Duvivier, 2015). The numbers of
ascospores trapped by Eriksen et al. (2001) and Duvivier (2015) suggest that ascospores can play an important role in late infection from mid-April
to mid-June. The results of simulations by Eriksen et al. (2001) showed that the proportion of ascospore infection can reach 25% under the most
favourable parameter combination. The results of simulations performed by Duvivier (2015), based on three dispersal mechanisms, suggested that

50-58% of infections can be explained by wind-dispersed ascospores.

Newton & McGurk, 1991; Le May et al., 2012). Given
the P-value in Figure 1d, these results should be inter-
preted with caution. However, these empirical findings
add to the weight of evidence supporting the key con-
clusion — the latent period can vary over the course of
a plant disease epidemic.

Temporal Variability In The Latent Period
Impacts Epidemic Development

It has been demonstrated that the latent period can
vary over the course of a plant disease epidemic, even
within a single season. This was the main goal of this
article. However, a key question is then whether or not
this variability affects epidemic dynamics, and conse-
quently whether or not temporal changes in the latent
period should be included in mathematical modelling
studies.

The development of a plant disease epidemic is there-
fore considered at the field scale, both within a season
and over the course of multiple seasons (Fig. 3). The
model tracks changes in the number of infected sites dur-
ing the epidemic, where the term ‘site’ refers to a unit of
plant tissue that can sustain an infection and further
infect other plant tissue (Savary & Willocquet, 2014). In
this analysis, it was not intended to replicate accurately
the dynamics of successive septoria tritici blotch

epidemics. Rather, the intention was to use as simple a
model as possible to test whether or not latent period
variation drives pathogen dynamics that are different to
those that might be expected if a constant latent period
is assumed. Even in the basic model, it was found that
the number of infected sites each season can be different
with variable and constant latent periods. This remained
true even when the mean latent period averaged over the
season was identical in each case (cf. Fig. 3c, d).

The mean length of the latent period in the —
potentially more realistic — variable latent period case
might be used in a model with a constant mean latent
period if measurements of the latent period are taken at
random time points throughout a season. However, as
shown, this will lead to an incorrect representation of
disease dynamics compared to using a model in which
the length of the latent period varies temporally during
the epidemic.

Discussion

This review has provided empirical evidence to support
the suggestion that the mean latent period of a plant
pathogen population can vary locally, in the short-term,
and that changes in the latent period can impact on the
development of epidemics. Consequently, the mean latent
period should not automatically be assumed to be

Plant Pathology (2018)



Latent period is not always constant

(a) Within-season

© 00

Between seasons

= 4

“10%

—_
2]
~—
n
U1
o

[
[=]
o

= =
o wu
o o

sites (E+ 1)

wun
o

Number of infected

AVVVY
0 10 20 30 40 50
Time (years)

(=)

bz

40

30

20

10

0

0 30 60 S0 120 150 180
Time since start of season, t (days)

Length of latent period, L(t) (days)

(d) 250

B S

jo)

g 20

h(]‘;J-._

£5 150

5

58 100

L'a

g

3 s0
0

0 10 20 30 40 50
Time (years)

Figure 3 Impact of variability in the latent period on plant pathogen dynamics. An epidemic is modelled using the classic susceptible—exposed—
infected (SEI) model in a host population consisting of S + E + [ = 1000 sites. A site on a leaf can be susceptible (S) i.e. healthy, exposed (E) or
infected (/) at any time. Between growing seasons, which lasted 0.5 years each, there were off-seasons of the same length. In each off-season, 10%
of infectious sites from the end of the previous growing season were assumed to found the initial infections (in the E class) at the start of the
following season. In the case of a disease with dual reproduction modes such as Zymoseptoria tritici, this means that 10% of isolates that induced
lesions are then involved in sexual reproduction and generate recombinants that have the capability of causing infections the following season. (a)
Model schematic. Equations for the within-season model are given by dSdt = —BIS, dE/dt = BIS—(V/L(t))E, dvdt = (1/L(1))E. The function L(t)
represents the length of the average latent period of the active pathogen population at time t days since the start of the season. This analysis uses

the infection rate parameter value p = 3 x 107° per day. (b) The latent period lengths that were considered are: (i) variable latent period case,

L(?) = 40—0.11t days (solid black line); (ii) constant latent period case, L(t) = 30 days (dotted black line); in the variable latent period case, the
function L(f) is chosen so that the mean value is identical to that in the constant latent period case. Specifically, the length of the latent period
decreases linearly between 40 and 20 days, which are values consistent with observed latent periods for Z. tritici. (c) The number of infected sites
when the latent period varies linearly over the course of the season. The model is solved numerically over 50 seasons, starting from initial conditions
S=999, E=1,/=0. The black dashed line represents the number of infected sites at the end of each season in the long-term when the model
settles into regular seasonal dynamics. (d) The number of infected sites when the latent period is constant. The model is solved numerically over 50
seasons, starting from initial conditions S =999, E = 1, / = 0. The black dashed line represents the number of infected sites at the end of each
season in the long-term when the model settles into regular seasonal dynamics. The number of infected sites at the end of each season is 35.2%
greater using a constant latent period than when a potentially more realistic variable latent period is used (cf. panel c).

constant over the course of annual plant disease epi-
demics in future studies.

A significant part of the variability in the length of the
latent period is due to the interaction between the
between-genotype variance within a pathogen population
and the expression of its phenotypic plasticity in
response to environmental changes; in other words, it is
biologically determined. Several empirical arguments jus-
tify this assertion as the sources of variation are numer-
ous: daily fluctuations in leaf temperature, nature of the
inoculum, host stage or age of host tissues, and selection
for aggressiveness traits within a population to name but
a few. Some of these sources of variation may have com-
plex, antagonistic impacts. For example, the mean latent
period may decrease over the course of an epidemic
because of selection for aggressiveness traits driven by
biotic or abiotic factors, for instance host stage and tem-
perature (Suffert ef al., 2015) in the case of Z. tritici.
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The latent period may also increase at the very end of
the epidemic due to changes in the ratio of the two spore
types resulting from an increase in sexual reproduction
before the end of the growing season (Eriksen et al.,
2001; Duvivier, 2015). Shaw (1990) suggested that the
increase in the latent period that he observed at high
mean temperatures reflected the adaptation of Z. tritici
to local climatic conditions, such as the cool summers in
the UK, and a physiological trade-off between an ability
to grow rapidly at high temperatures and an ability to
grow rapidly at low temperatures. This hypothesis is
consistent with the conclusions of Suffert et al. (20135,
2018) that seasonal changes can drive short-term selec-
tion for fitness traits, recently confirmed by Anne-Lise
Boixel (INRA BIOGER, France, personal communica-
tion). However, Shaw’s results were obtained in field
conditions, and are therefore also affected by a number
of factors including host growth stage (the latent period
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is shorter on seedlings than on adult plants), the use of
air temperature rather than leaf temperature (Bernard
et al., 2013), and a greater amplitude of daily fluctua-
tions during spring than during winter (Bernard, 2012).

The arguments presented here challenge the assump-
tion that the mean latent period of a local pathogen pop-
ulation remains constant over the course of an epidemic.
While the direction (decrease or increase) and the biolog-
ical causes of these variations are difficult to determine,
and accurate characterization of variability in the latent
period may require collection of additional data, mod-
ellers should consider that the mean latent period may
not necessarily take a constant value throughout a plant
disease outbreak. This may apply to epidemics at a range
of spatial or temporal scales — including epidemics at the
field or landscape scale, potentially including overlapping
cohorts of plants planted in a region. Directional vari-
ability in the length of the latent period, driven by bio-
physical processes such as the four sources of variation
identified here, could be built into epidemiological mod-
els.

Sources of short-term variability in the latent period
could be analysed further and potentially incorporated in
the case of Z. tritici into at least three types of epidemio-
logical models: (i) forecasting models used to simulate
the development of annual epidemics and improve wheat
protection strategies, such as taking into account sec-
ondary inoculum pressure to determine the optimal tim-
ings for effective fungicide sprays (e.g. Audsley ez al.,
2005; El Jarroudi et al., 2009); (ii) mechanistic models
used as research tools for understanding the impacts of
different epidemiological parameters and processes in
driving infectious disease outbreak dynamics, for exam-
ple discerning the relative importance of pycnidiospore
and ascospore infections (e.g. Eriksen et al., 2001; Duvi-
vier, 2015) or the dynamic interaction between plant
architecture impacted by cropping practices (nitrogen fer-
tilization, sowing density) and spore dispersal (Baccar
et al., 2011); (iii) eco-evolutionary models over several
epidemic seasons in which the latent period might evolve
in response to selective pressures, for example thermal
variation (Suffert et al., 2015; Anne-Lise Boixel, INRA
BIOGER, France, personal communication). There may
also be an evolutionary trade-off between intra- and
interannual scales (Suffert et al., 2018), or an evolution-
ary optimum driven for instance by the level of nitrogen
fertilization (Précigout et al., 2017).

This review has demonstrated the principle that
including directional wvariability in the latent period,
rather than making the common assumption that the
mean latent period is constant throughout an epidemic,
can change the behaviour of a mathematical model
(Fig. 3). The simplest possible model was considered, in
which there is a latent period, namely the susceptible—
exposed—infected (SEI) model. However, forecasting
would of course require a more detailed model adjusted
for the specific system under consideration. Alterations
might include features such as the spatial distribution of
hosts and temporal changes in disease management

strategies (control of inoculum sources, varietal diversifi-
cation to limit adaptation of the pathogen population to
the host, etc.). For Z. tritici specifically, more detailed
models exist and could be used (e.g. Elderfield ez al.,
2018). However, the concept that variability in the latent
period should be considered in future modelling studies
has been demonstrated.

Of course, the values of other epidemiological parame-
ters are also likely to vary temporally (e.g. the infection
rate and infectious period). In theory, it might be possi-
ble to include variability in those factors, as well as to
model complex features in detail such as individual
lesion growth dynamics and variability between different
leaf layers. However, epidemiological modelling requires
some simplifications to be made for tractability, and so
that the model can be parameterized. Deciding which
factors to include is therefore a challenging balancing act
— including too little biological detail leads to a model
that is unrealistic, yet including too many factors leads
to an unparameterizable and intractable model. Here it
has been shown not only that the latent period can vary,
but also that this variation may alter disease dynamics
significantly. As a result, the assumption that the latent
period — as well as other epidemiological parameters — is
constant in basic models should be considered further in
future work. An interesting subsequent study might
examine precisely how the exact form of the latent per-
iod distribution influences outbreak dynamics, including
distributions with different means and variances but also
different shapes.

Under some circumstances, including detailed descrip-
tions of the latent period may not in fact increase the
accuracy of model predictions. Cunniffe et al. (2012)
proposed an extension to the generic SEI model, splitting
the latent and infectious compartments and thereby
allowing time-varying infection rates and more realistic
distributions of latent and infectious periods to be repre-
sented. Their results demonstrated that extending a
model that has such a simplistic representation of the
infection dynamics might not always lead to more accu-
rate results. However, including accurate representations
of incubation, latent and infectious periods in models
can be extremely important. Leclerc et al. (2014) con-
ducted experiments on the soilborne pathogenic fungus
Rhizoctonia solani in sugar beet and used spatially expli-
cit models to estimate the incubation period distribution.
They showed that accurate information about the incu-
bation period distribution could be critical in assessing
the current size of an outbreak and the probable efficacy
of proposed control interventions.

Using Z. tritici as a case study, it has been demon-
strated that the mean length of the latent period can vary
during plant disease epidemics. Further sources of vari-
ability are likely to exist in addition to those considered
here. However, it is hoped that this study will prompt
more detailed quantification of the variability in the
latent period for a wide range of pathogens, as well as
more detailed testing of the circumstances in which this
variability should be included in modelling studies. It is
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contended that this might lead to more accurate charac-
terization of pathogen dynamics, in turn potentially lead-
ing to more effective disease management.
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