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Abstract

Capacity for dispersal is a fundamental fitness component of plant pathogens.

Characterization of plant pathogen dispersal is important for understanding how

pathogen populations change in time and space. We devised a systematic ap-

proach to measure and analyze rain splash-driven dispersal of plant pathogens

in field conditions, using the major fungal wheat pathogen Zymoseptoria tritici as

a case study. We inoculated field plots of wheat (Triticum aestivum) with two dis-

tinct Z. tritici strains. Next, we measured disease intensity as counts of fruiting

bodies (pycnidia) using automated image analysis. These measurements char-

acterized primary disease gradients, which we used to estimate effective dis-

persal of the pathogen population. Genotyping of reisolated pathogen strains

with strain-specific PCR confirmed the conclusions drawn from phenotypic data.

Consistently with controlled environment studies,we found that the characteristic

scale of dispersal is tens of centimeters. We analyzed the data using a spatially

explicit mathematical model that incorporates the spatial extent of the source,

rather than assuming a point source,which allows for a more accurate estimation

of dispersal kernels. We employed bootstrapping methods for statistical testing

and adopted a two-dimensional hypotheses test based on kernel density esti-

mation, enabling more robust inference compared with standard methods. We

report the first estimates of dispersal kernels of the pathogen in field conditions.

However, repeating the experiment in other environments would lead to more ro-

bust conclusions. We put forward advanced methodology that paves the way for

further measurements of plant pathogen dispersal in field conditions, which can

inform spatially targeted plant disease management.

Keywords: dispersal kernel, dispersal gradient, Zymoseptoria tritici, wheat, rain-

splash dispersal, bootstrap, spatially explicit modeling, plant disease epidemiol-

ogy, dispersal ecology

Ability to spread within host populations is a fundamental requirement for plant
pathogens. Spatial spread influences the number of host plants that a pathogen can infect
and governs the spatial distribution of pathogen populations. For polycyclic diseases,
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even small differences in the spread during one infection cycle
can result in considerable differences in epidemic outcomes af-
ter several cycles. Understanding the mechanisms and scales of
pathogen dispersal can improve our ability to predict and control
plant disease epidemics.

Although the epidemiological importance of dispersal has long
been recognized (Heald 1913), measurements in field conditions
are rare, for numerous reasons: (i) field experiments on disper-
sal are difficult to design and conduct (McCartney et al. 2006);
(ii) they are inherently multidisciplinary, spanning the interface
between biology and physics; (iii) it is challenging to measure
the primary dispersal gradient (i.e., resulting from a single round
of pathogen reproduction) independently of secondary dispersal
and environmental gradients (Gregory 1968); and (iv) charac-
terization of finer-scale dispersal occurring on submeter scales
can be difficult in the field. Existing literature contains many
more studies characterizing airborne dispersal of plant pathogens
compared with splash dispersal (McCartney et al. 2006): Fitt et
al. (1987) found 305 datasets on airborne dispersal in the field,
only 10 datasets on splash dispersal in controlled conditions,
and no studies on splash dispersal in the field. A possible ex-
planation for this disparity is that commercially available spore
traps or disease assessments readily capture spatial scales of me-
ters or longer, characteristic of airborne dispersal, but those are
more challenging to apply over submeter scales typical for splash
dispersal.

Zymoseptoria tritici (formerly Mycosphaerella graminicola)
is a major fungal pathogen of wheat (Dean et al. 2012; Jørgensen
et al. 2014) that causes Septoria tritici blotch (STB) disease.
Z. tritici disperses by means of airborne ascospores (sexual) and
splash-borne pycnidiospores (asexual). Pycnidiospores are the
main driver of polycyclic epidemics during the wheat growing
season. Ascospores are the main source of primary inoculum
in the beginning of an epidemic and contribute to epidemic de-
velopment during the season (Duvivier et al. 2013; Zhan et al.
1998, 2000). According to some studies, initial inoculum via air-
borne ascospores is uniform across the horizontal spatial extent
of wheat fields and does not represent a limiting factor for epi-
demic development (Morais et al. 2016), implying that vertical
dispersal from lower to higher leaf layers is more relevant epi-
demiologically than horizontal dispersal across the spatial extent
of wheat fields. However, it is not clear how general these con-
clusions are; it is possible that they hold only in regions with a
temperate wet climate and intense wheat production dominated
by STB-susceptible wheat cultivars, where the studies have been
conducted. However, most of the research on splash dispersal
of Z. tritici has focused on vertical dispersal of spores from ini-
tial infection on basal leaves of seedlings to emerging leaf lay-
ers (Bannon and Cooke 1998; Lovell et al. 1997, 2004b; Shaw
1987; Vidal et al. 2018). In this context, the interaction between
the pathogen and its host plant has been described as a “race,”
where the pathogen population must “climb” up to the next leaf
layer before the current layer becomes senescent and resources
are depleted (Robert et al. 2018).

We argue that horizontal dispersal is as important as vertical
dispersal because it greatly influences the ability of a specific
pathogen genotype to take over a field, and therefore, it can play
a major role in the dynamics of emerging pathogen genotypes
adapted to control measures such as fungicides or disease re-
sistance genes in host plant. However, because of insufficient
empirical knowledge on rain splash-driven horizontal dispersal,
it has not been considered in modeling the emergence of new
pathogen strains (e.g., Mikaberidze et al. 2017; Willocquet et al.
2020). Horizontal expansion of disease foci (Zadoks and van den
Bosch 1994) corresponds to the growth of a genetically uniform

pathogen population that is well adapted to control measures ap-
plied in a spatially uniform manner (e.g., fungicides or disease
resistance genes). For this reason, spatially heterogeneous con-
trol strategies have been suggested, such as varietal mixtures in
individual fields or landscape mosaics (Ben M’Barek et al. 2020;
Djidjou-Demasse et al. 2017; Mikaberidze et al. 2014; Mundt
and Browning 1985; Newton and Guy 2011; Newton et al. 2009;
Orellana-Torrejon et al. 2021; Sapoukhina et al. 2010). The spa-
tial scale of such strategies can be optimized based on the knowl-
edge on spatial scales of horizontal dispersal of the pathogen.
This knowledge is captured by a dispersal kernel function that
describes the probability of an individual dispersal event to end
up at a certain location relative to the source (Nathan et al. 2012).

Dispersal via asexual spores of Z. tritici and of the wheat
pathogen Parastagonospora nodorum (formerly Septoria nodo-
rum) has been studied in controlled conditions using inoculations
via infected straw or spore suspension combined with artificial
rain (Brennan et al. 1985; Saint-Jean et al. 2004; Vidal et al. 2017).
Bannon and Cooke (1998) studied the effect of wheat–clover in-
tercrop on dispersal from plates by artificial rain and detected a
reduction of dispersed spores at 15 cm distance from the source.
No experiment has been conducted within a host plant canopy in
the field that would allow for parameterizing the dispersal kernels
associated with splash dispersal.

We conducted an experiment to measure the splash dispersal
of Z. tritici in field conditions. We carried out localized artifi-
cial inoculations with two Z. tritici strains as well as their mix-
ture that contained equal proportions of each strain. Conducive
weather conditions allowed us to measure primary dispersal gra-
dients resulting from single dispersal events following the initial
artificial inoculation. We used automated digital image analysis
(Karisto et al. 2018; Stewart et al. 2016) to estimate the sizes
of pathogen populations on wheat leaves based on detection of
pycnidia (fungal fruiting bodies). In addition, we genotyped the
reisolated strains using strain-specific primers to differentiate the
inoculated pathogen populations from the background natural
population. Using a spatially explicit mathematical model that
considered the spatial extent of the source area (Karisto et al.
2019b), we achieved the first estimates of dispersal kernel param-
eters associated with splash dispersal of Z. tritici pycnidiospores
in field conditions.

MATERIALS AND METHODS

Plant materials and agronomic practices

The experiment was performed at the Field Phenotyping Plat-
form site, Eschikon Field Station, ETH Zurich, Switzerland
(Kirchgessner et al. 2017). Experimental plots were sown with
winter wheat (Triticum aestivum) cultivar Runal (breeder: Swiss
Federal Research Station for Agroecology and Agriculture, FAL,
Zurich, Switzerland) on 1 November 2016. Sowing density was
440 seeds/m2, and the observed stem density on 19 June 2017
was 730 stems/m2. Field maintenance included herbicide Herold
SC (0.6 liter/ha; Bayer) on 2 November 2016 and stem shortener
Moddus (0.5 liter/ha; Syngenta) on 13 April 2017. The fungi-
cide Input (1.25 liter/ha; spiroxamine 300 g/liter, prothioconazole
160 g/liter; Bayer) was applied on 13 March 2017 to suppress the
natural epidemic of STB and other fungal diseases.

A similar experiment was prepared at INRAE Bioger,
Thiverval-Grignon, France (coordinates: 48.840N, 1.952E). The
experimental design was slightly adapted. Due to unconducive
weather conditions, the inoculation did not produce measurable
primary disease gradients. Therefore, no data are presented.
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Experimental design

The experimental plots were 1.125 × 4 m rectangles consist-
ing of nine 4-m-long rows with a distance of 12.5 cm between
the rows. Plots were randomly assigned to four treatments
with five replicates of each treatment, as shown in Figure 1A.
The four treatments were (i) inoculation with the single strain
ST99CH_1A5 (short identifier 1A5), (ii) inoculation with the sin-
gle strain ST99CH_3D7 (short identifier 3D7), (iii) inoculation
with both strains 1A5 and 3D7 (mixed inoculation), and (iv) con-
trol (no inoculation). The two strains were collected and isolated
in Switzerland in 1999 (Zhan et al. 2002; see also http://www.
septoria-tritici-blotch.net/isolate-collections.html). The strains
were chosen because of their capacity to infect cultivar Runal,
their contrasting production of pycnidia (Stewart et al. 2018),
and their ability to cross with each other (1A5, Ma1-1; 3D7,
Mat1-2; Suffert et al. 2018).

In each plot, a 40-cm-wide area across the middle of the plot
was inoculated. Disease levels were measured in the middle of the
inoculated area (x0 = 0 cm) and at eight locations outside of the
inoculated area, four on each side (at distances of x±1 = 40 cm,

FIGURE 1
Overview of the experiment. A, Arrangement of the plots in the
field (treatment letter and replicate number: A = 1A5, B = mixed
inoculation, C = control, D = 3D7). B, Design of an experimental
plot; 40-cm-wide inoculation area in the middle (orange).
Distances from the middle of the inoculated area to the middle
of each measurement line were x0 = 0 cm, x±1 = 40 cm, x±2 =
60 cm, x±3 = 80 cm, and x±4 = 120 cm. C, D, and E, Overlay
images illustrate the automated image analysis by showing
leaves collected from measurement lines x0 (C), x+2 (D), and x+4

(E) of the treatment 3D7 at the sampling date t1. Cyan, purple,
and yellow lines mark the borders of leaves, lesions, and
pycnidia, respectively. F, Weather conditions during the
experiment. Daily precipitation in the blue bars, daily mean
temperature in the red line, dates of inoculation and leaf
samplings are shown with vertical lines.

x±2 = 60 cm, x±3 = 80 cm, and x±4 = 120 cm from the cen-
ter of the inoculated area; see Fig. 1B). The areas in which we
conducted measurements (“measurement lines,” shown as dark
rectangles in Fig. 1B) were 10 cm wide and 87.5 cm long across
the plot, excluding the 12.5-cm borders at each edge of the plot
to reduce edge effects. Disease assessments were conducted uni-
formly over the area of each measurement line.

Z. tritici inoculation

Inoculum was prepared by growing the fungus for 7 days
in yeast-sucrose broth (https://dx.doi.org/10.17504/protocols.io.
mctc2wn). The liquid culture was then filtered and the blas-
tospores were pelleted in centrifuge and resuspended in sterile
water. The washed spore suspension was diluted with water to
achieve the concentration of 106 spores/ml. For mixed inocu-
lation, the spore suspension was obtained by mixing the same
volume of each single-strain suspension so that the final spore
concentration was 106 spores/ml and each strain was present with
the concentration of 5×105 spores/ml. Finally, we added 0.1%
(v/v) of Tween 20 and kept the inoculum suspension on ice until
spraying on the same days.

Inoculation was performed by spraying 300 ml of spore sus-
pension onto the inoculation site of each plot using a hand-pump
pressurized sprayer. The plots were inoculated during the late af-
ternoon to avoid direct sunlight. All treatments were inoculated
with the same sprayer, which was rinsed with water and with
70% ethanol to clean all parts before inoculating each treatment.
The entire canopy within the inoculation area was inoculated until
runoff. During the spraying, the 40-cm-wide inoculation area was
bordered with plastic sheets to avoid spillover of the inoculum
outside the area. After spraying, the border sheets were folded
over the canopy to enclose the plants in a plastic tent to maintain
high humidity overnight. The tents were removed early the next
morning to avoid overheating. The inoculation was repeated the
next evening. Photographs documenting the inoculation process
are shown in Supplementary File S1 (Appendix B).

We first inoculated the plants on 5 to 6 April, when the F-3
layer (the third leaf layer below the flag leaf) had mostly emerged
(approximate growth stage, GS 22; Zadoks et al. 1974), but this
inoculation did not cause sufficient disease (see below). For this
reason, we conducted a second inoculation on 17 and 18 May,
when flag leaves had already emerged (GS 39 to 41). The second
inoculation resulted in strong, measurable disease gradients.

We considered the first inoculation as failed for the purpose of
the experiment based on three lines of evidence. First, when we
assessed the inoculation success on 24 April and 3 May, infec-
tion was extremely limited. On 3 May, we observed low levels
of disease in the F-3 leaf layer when the plants were in the be-
ginning of stem elongation (F-1 emerging, GS 35). Average STB
incidence in the F-3 layer in the inoculated areas was 6.1, 4.9,
2.9, and 0% for strains 1A5, 3D7, mixed inoculation, and control,
respectively. In all the leaf layers above F-3, we observed disease
incidence close to zero (one lesion across 655 tillers). Second, the
top three leaf layers consistently remained healthy until 8 June.
Only on 14 June (28 days after inoculation, DAI) did we observe
for the first time substantial numbers of sporulating lesions on the
top three leaf layers within the inoculated areas. A rapid onset
of symptoms must have occurred between 8 June (when we ob-
served only a few tiny lesions, mostly without pycnidia) and 14
June. This onset of symptoms matched with the date of the sec-
ond inoculation, considering the estimated latent period. Third,
the most plausible reason the first inoculation did not cause sub-
stantial disease was that April 2017 was unusually cold, including
3 days (18 to 20 April) with minimum temperatures below zero,
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which are known to hinder the development of disease. To con-
clude, it is extremely unlikely that the first inoculation had any
measurable effect on the observed disease gradients.

Assessment of disease gradients

The disease assessment combined incidence and severity mea-
surements. It was performed at two time points. At t0, on 14 June
2017 (GS 70), only the inoculation areas were assessed carefully
to evaluate the success of inoculation across the measurement
line x0. Flag leaves outside the inoculation area were inspected
visually and confirmed to be healthy. At t1 on 4 July 2017 (GS
85), all measurement lines (x0, x±1, x±2, x±3, and x±4) were as-
sessed in all plots corresponding to inoculated treatments (1A5,
3D7, and mixed inoculation), whereas only one randomly chosen
measurement line was assessed in each of the control plots.

At t0, STB incidence was measured at the leaf scale in the
following manner. Thirty to 40 stems were inspected on each
measurement line. The highest diseased leaf layer was recorded
for each stem. The leaves lower than that were assumed to be
diseased, as STB is usually more prevalent in the lower leaf lay-
ers (Lovell et al. 2004a). Additionally, naturally senescent leaf
layers at the bottom of the canopy were recorded. In this way,
incidence was estimated for all nonsenescent leaf layers. After
estimating the incidence, eight infected leaves were collected
from up to two consecutive leaf layers that had incidence higher
than 20% (to avoid removing too much of the inoculum). The
collected leaves were then mounted on paper sheets and scanned
with 1,200 dpi resolution. The resulting images were analyzed us-
ing an automated image analysis method to measure two aspects
of conditional STB intensity that represent the host damage and
the pathogen reproduction, as described by Karisto et al. (2018).
Host damage was measured as the percentage of leaf area cov-
ered by lesions, and pathogen reproduction was measured as the
number of pycnidia per leaf. The sampled leaf layers at t0 were
the flag leaf layer (F) and the layer immediately below the flag
leaf (F-1).

At t1, the wheat leaves were already mostly chlorotic and hence
the incidence measurement was not possible in the field. Instead,
we collected at random about 24 leaves from each measurement
line. The leaves were taken into the lab and inspected for the
presence of pycnidia. Incidence was recorded based on the pres-
ence of pycnidia, and the leaves with pycnidia were scanned as
described above to quantify the conditional STB intensity. Due
to vast chlorosis, the measurement of host damage was consid-
ered unreliable, and only pathogen reproduction was used in the
subsequent analysis. Thus, we measured the conditional disease
intensity using only the numbers of pycnidia per leaf.

We estimated the number of asexual reproduction and dispersal
events between t0 and t1 using the following arguments. First,
based on the data from Shaw (1990; as revisited in Figure A1
of Karisto et al. 2018), the latent period after inoculation was
estimated to be longer than 20 days (average daily temperature
during first 19 days was 19°C). Thus, there was likely no spread
from the inoculation areas during the rainy period 13 to 17 DAI
(Fig. 1F). This was further confirmed by a visual assessment
on 8 June (22 DAI), when we observed only a few tiny lesions
and mostly no pycnidia on plants inside the inoculation areas,
concluding that substantial spread had not yet occurred. Second,
at t0 (14 June, 28 DAI) we observed substantial disease (Fig.
2A) in the inoculation areas. There was no rain during the week
preceding t0, two strong showers during the night, about 36 h after
t0, and no more rain during the following week. We concluded
that there was most likely only one asexual spread event right

after t0, which caused the disease gradients that we observed at
t1 (4 July, 48 DAI) outside of the inoculation areas.

We concluded that the second inoculation was successful: It
caused high disease levels observed in the inoculation areas at t0,
after a latent period of 3 to 4 weeks. After 3 more weeks, at t1,
there were clearly visible symptoms outside of the inoculation
areas. The observed symptoms at t1 can be entirely attributed to
the rain event on 17 June (shortly after t0) and consequent asexual
spread of the pathogen.

Genotyping

To confirm that the observed disease gradients were due to the
experimental treatments, we reisolated 153 Z. tritici individuals
from individual pycnidia on the collected leaves after scanning.
The isolations were performed from leaves collected in the mea-
surement lines x±1 and x±3. To detect the inoculated strains, we
designed and used strain-specific PCR primers (see details in the
Supplementary File S1, Appendix A). As a result of the genotyp-
ing, the isolates were identified as either 1A5 or 3D7 if the two
primer pairs specific to one of these strains yielded amplification
whereas the primer pairs specific to the other strain did not.

Statistical analysis

Fitting disease gradients. The disease intensity (numbers of
pycnidia per leaf) at t1 in a given measurement line is a result of
dispersal of asexual spores from the inoculation area and success-
ful infections within the measurement line. Assuming spatially
uniform success of infections in all plots, the observed disease
gradient reflects the dispersal gradient of spores and thus pro-
vides the effective dispersal gradient of the pathogen population.
Following the spatially explicit method for parameterizing a dis-
persal kernel (Karisto et al. 2019b), the dispersal process can be
described mathematically using two area integrals: one over the
source area and the other over the destination area. We used the
exponential dispersal kernel:

κ (r) = e− r
α

2 π α2
(1)

that fits the experimental data well for splash dispersal (Fitt
et al. 1987; Saint-Jean et al. 2004). Here, r is the distance from the
source to the destination of dispersal and α is the scale parameter
of the dispersal kernel that determines the characteristic spatial
scale of dispersal (below we call it the “dispersal parameter”).

As the dispersal kernel characterizes a point-to-point process,
we consider the area of the inoculated source (S) and area of
the destination (D) by integrating over those areas, which gives
us the total disease intensity transmitted from the source to a
measurement line. The average intensity within a measurement
line is calculated by dividing the total intensity by the area of
the measurement line (AD). Hence, the disease intensity at t1 in
a measurement line at a distance x* from the inoculation area is
given by

It1

(
x∗) = I0β

AD

∫∫

D(x∗ )

∫∫

S

e−
√

(xd −xs )2+(yd −ys )2

α

2πα2
dAS dAD (2)

This general approach can consider arbitrary shapes of the two
areas of integration S and D. In the specific case of our experimen-
tal design, the two areas correspond to the following rectangles:
S = {(xs, ys)} = [0, ls] × [0, w] is the source area that corre-
sponds to the inoculated area (the orange rectangle in Fig. 1B),
and D = {(xd , yd )} = [x∗−wd/2, x∗ + wd/2] × [b, w − b] is
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the destination area that corresponds to a measurement line (the
dark rectangles in Fig. 1B). I0 is the STB intensity (numbers of
pycnidia per leaf) in the inoculation area at t0; β is the trans-
mission rate (unitless) describing the number of new pycnidia
produced in the measured leaf layer per unit of measured inten-
sity in the source leaves; ls = 40 cm is the extent of the inoculated
area along the x axis (i.e., along the length of the plot); w = 112.5
cm is the plot width; wd = 10 cm is the width of measurement
lines; and b = 12.5 cm is the width of the border excluded from
the measurement lines. Hence, the integration over a measure-
ment line divided by the area of the line, AD = wd (w – 2b),
gives the average disease intensity across the measurement line,
reflecting spatially uniform leaf sampling.

Note that the 10-cm width of the measurement lines was prac-
tically the smallest possible width that could be achieved in the
field measurements because the foliage of even a single straw
spans more than 10 cm, limiting the spatial resolution of our
measurements. For this reason, we simplified the model by ne-
glecting the width of the measurement lines and assigning the

disease intensity values of each measurement line to the middle
of the line. With this simplification, equation 2 reads

It1

(
x∗) = I0β

w − 2b

∫ w−b

b

∫ ls

0

∫ w

0

e−
√

(x∗−xs )2+(yd −ys )2

α

2πα2
dxsdysdyd

(3)

Dispersal is often modeled as a one-dimensional process
(Fitt et al. 1987; Madden et al. 2007), which neglects the
spatial extent of the source area, assuming it to be a point.
This approximation usually leads to inaccurate estimates of
dispersal kernels (Karisto et al. 2019b). For this reason, we
used the spatially explicit model equation 3, which allows
for more accurate estimation of dispersal kernels. However,
to enable comparisons between our outcomes and the ear-
lier estimates in controlled conditions, and to highlight the
distorting effect of this “standard” approximation, we constructed
the one-dimensional function describing the dispersal process

FIGURE 2
Disease intensity and dispersal gradients. In all panels, dots represent means over individual replicate plots. In panels A and B, we
present outcomes for 1A5 (blue), mixed inoculation 1A5+3D7 (orange), 3D7 (green), and noninoculated control (red) treatments. Black
horizontal bars with asterisks show the significant pairwise differences between treatments at t0 and at t1. A, Disease intensity in the
inoculation area at t0, measurements for leaf layers F and F-1 for the three treatments, F-2 for control (as there was no disease at
higher leaf layers). B, Gradients of disease intensity in leaf layer F at t1 after the spread event for the three inoculation treatments. Red
horizontal line shows the mean disease intensity in F layer over all control plots. C, Disease gradients of strain 3D7 are fitted using
equation 3. Black curve shows the best fit, vertical black line shows 99th percentile of the dispersal distance (d99). Green violin plots
show the distributions of 500 bootstrap replicates, green curves represent fits to each of these bootstrap replicates, and green vertical
lines show the corresponding d99 values.
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that follows an exponential kernel:

It1

(
x∗) = I0β

∫ ls

0

e− |x∗−xs|
α

2α
dxs (4)

In equation 4, the integral takes sum over the inoculated area
along the length of the plot. We conducted the integration in
equation 4 and obtained a simpler expression:

It1

(
x∗) = I0β

2

(
e

ls
α − 1

)
e− x∗

α (5)

where x* takes the values outside of the inoculation area.

Estimation of dispersal and transmission parameters

The data used in the analysis were obtained in the follow-
ing way. First, we conducted STB incidence measurements and
acquired conditional STB intensity measurements from the dig-
ital image analysis. Second, the STB intensity values in each
measurement line were multiplied by the corresponding STB in-
cidence to obtain the full or “unconditional” intensity values,
hereafter called “intensity” for the sake of simplicity. Third, we
calculated the average full intensity in each measurement line to
obtain five data points (from five replicates) for each treatment (at
distances x0, x±1, x±2, x±3, and x±4). These average values over
each measurement line were used for fitting the model functions.
The dispersal gradient functions (equations 2 and 3) were fitted
to the data to estimate α and I0β.

To compare the treatments and the two directions, we used
the bootstrapping approach. We resampled the collected sam-
ples with replacement to create a large set of bootstrap samples.
Variation in the bootstrap samples reflects the variation that we
would expect to observe if the actual experiment was repeated
several times (see, e.g., Davison and Hinkley 1997). Bootstrap-
ping allowed us to model explicitly the variation related to the
incidence counts and the variation related to the leaf collection,
independently of each other. This approach also allowed us to as-
sess uncertainties in the parameter estimates without making any
assumptions about the distributions of the data or the parameter
values.

We created 100,000 bootstrap samples for each measurement
line in each replicate in the following manner. First, we simulated
the incidence counts on the measurement lines to create a distri-
bution of incidence values. We assumed a population of 82 stems
within each measurement line (based on the observed stem den-
sity) and simulated a random leaf sampling 100,000 times with
all possible incidence values. We recorded the “real” incidence
value each time the simulation produced the observed value. That
created a distribution of “real” incidence values corresponding to
our observation. Second, we sampled with replacement the ana-
lyzed leaves to generate 100,000 new samples with the original
sample size. Third, the mean disease intensity of each bootstrap
leaf set was multiplied by an incidence value drawn from the cor-
responding incidence distribution to obtain the mean intensity
for each measurement line. Finally, we grouped these uncondi-
tional means over measurement lines into sets representing the
five replicates. As a result, we obtained 100,000 bootstrap repli-
cates of the entire experiment.

The one-dimensional disease gradient in equation 5 was fitted
to each of the 100,000 bootstrap replicates. The disease gradient
function in equation 3 was fitted to a subset of 10,000 bootstrap
replicate datasets for computational reasons. As a result, we ob-
tained a large number of bootstrap estimates of parameters α and
βI0 for each treatment and direction. These estimates were used
to conduct statistical tests.

Statistical tests

Parameter differences were tested using a simple bootstrap
hypothesis test (Davison and Hinkley 1997, p. 162), where the
observed difference between parameter values in different condi-
tions is compared to a distribution of differences between those
conditions in the bootstrap samples. If only a few bootstrap sam-
ples give a more extreme difference than the observed one, then
the observed difference is considered significant. Significance
level (P value) of the observed difference is calculated by divid-
ing the number of cases where the difference in the test statistic si

is greater than or equal to the observed difference sobs (including
the observed case) by the total the number of bootstrap replicates
(R) plus the observed case:

P = 1 + # {si ≥ sobs}
1 + R

(6)

Additionally, we tested differences between conditions in the
parameters α and βI0 simultaneously using a two-dimensional
hypothesis test based on the joint distribution of differences in
α and βI0 (the “equidensity” test, analogous to Johansson et al.
2014). A kernel density estimate of the joint distribution was
obtained to define the degree of “extremity” of a point in the two-
dimensional parameter space. The point reflecting the observed
difference was compared to the joint distribution of differences
between bootstrap replicates. The observed difference was con-
sidered significantly different from zero if it was located in a
sufficiently sparse area, such that less than 5% of the bootstrap
estimates were located in regions with equal or lower density,
analogous to being in the thin tail of a one-dimensional distribu-
tion.

We present 95% confidence intervals for the parameters de-
rived from the distribution of bootstrap results (i.e., the limits
of the 2.5th and 97.5th percentile of the distribution). Addition-
ally, differences in disease levels between treatments 1A5, 3D7,
and mixed inoculation were tested at t0, x0 and t1, x±1 with the
Kruskal-Wallis test and the pairwise Dunn’s post hoc comparison
with Bonferroni correction.

Statistics implementation

All data analysis was implemented in Python (versions 3.5.2
and 3.6.0), and the code is provided together with the data. Fit-
ting was performed using the ‘Model.fit’ function of the lm-
fit package (v. 0.9.10; Newville et al. 2014), with the methods
‘brute’ for initial guess, ‘leastsq’ for actual fitting, and occasion-
ally ‘tnc’ (truncated Newton) when ‘leastsq’ failed. Numerical
integrations were implemented with ‘quad’ and ‘dblquad’ func-
tions in the SciPy package (v. 1.0.1; Virtanen et al. 2020). Fitting
of the two-dimensional functions (equations 2 and 3) was per-
formed using the high-performance computing cluster Euler of
ETH Zurich. The Kruskal-Wallis test was conducted with the
‘Kruskal’ function in the SciPy package and Dunn’s test with the
‘posthoc_dunn’ function in the scikit-posthocs package (v. 0.3.8;
Terpilowski 2018).

RESULTS

The second inoculations with strains 1A5 and 3D7, and their
mixture, were successful: At t0, we observed increased disease
levels in the inoculation areas of all three treatments compared
with controls (Fig. 2A). At time point t1, there was a gradient
of disease intensity from higher levels at x±1 to lower levels at
x±4 (Fig. 2B). Genotyping the reisolated strains confirmed the
successful spread (Supplementary File S1, Appendix A). In to-
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tal, 4,190 plants were inspected in the course of incidence mea-
surements, 2,527 leaves were collected and analyzed using the
digital image analysis, and 153 isolates were genotyped. The en-
tire dataset including raw data, bootstrap replicates, best fitting
parameter estimates, and weather data is available in Dryad data
repository (https://doi.org/10.5061/dryad.kkwh70s5r).

Estimates of pathogen dispersal parameters

Fitting equation 3 to the observed disease gradients allowed us
to estimate parameters α (dispersal parameter) and βI0 (transmis-
sion rate × initial intensity at the source). For 1A5 treatment, the
estimates of α were very low and estimates of βI0 were very high
compared with 3D7 and mixed inoculation (Table 1). The results
are biologically unrealistic and were likely due to an insufficient
disease intensity within the inoculation area and consequently a
shallow gradient outside the inoculation area (Fig. 2A and B).
Less successful spread of 1A5 than of 3D7 was confirmed by
comparing disease intensities between the treatments at t0, x0

and at t1, x±1. At t0, x0, the disease intensity was significantly
lower for 1A5 than for 3D7 (Kruskal-Wallis test H = 10.66,
P = 0.005; pairwise Dunn’s test P = 0.004). Furthermore, at t1,
x±1, the intensity in treatment 1A5 was lower than the intensity
in both the 3D7 and the mixed inoculation treatments (Kruskal-
Wallis H = 117.1, P = 3.4 × 10−26; Dunn’s test 1A5 versus
3D7 P = 6.0 × 10−24; Dunn’s test 1A5 versus mixed inoculation
P = 2.6 × 10−18); at other measurement distances, the Kruskal-
Wallis test detected no differences. Due to the differences in 1A5
treatment compared with others, the next steps of analysis are
presented only for 3D7 and mixed inoculation treatments.

Comparison of the best-fitting parameters (Table 1) between
the “positive” (northwest) and “negative” (southeast) directions
revealed no significant difference in treatment 3D7 (equidensity
P value: P2D = 0.21, one-dimensional hypothesis test equation
6 for parameter α: Pα = 0.17, parameter βI0: PβI0 = 0.13,
Fig. 3A), nor in the mixed inoculation treatment (P2D = 0.74,
Pα = 0.60, PβI0 = 0.95). This similarity between directions sug-
gests isotropic dispersal during the experiment.

Considering this isotropy, we estimated the parameters using
the dataset that combined the two directions. We established a
significant difference between 3D7 and mixed inoculation treat-
ments (P2D = 0.014, Pα = 0.020, PβI0 = 0.018, Fig. 3B). The
dispersal parameter α was higher in mixed inoculation, whereas
βI0 was higher in the 3D7 treatment (Table 1). We thus highlight
that following the mixed inoculation, the pathogen had dispersed
further but caused lower disease transmission compared with 3D7
treatment.

TABLE 1

The best-fitting parameters from equation 3z

Treatment Direction α (95% CI) (cm) βI0 (95% CI) (pycnidia/leaf)

1A5
Positive 2.5 99,992
Negative 4.9 3,518
Combined 2.6 99,975

3D7
Positive 15.3 (12.3–19.7) 1,559 (1,147–2,112)
Negative 12.0 (9.3–15.5) 2,387 (1,613–3,638)
Combined 13.5 (11.5–16.1) 1,915 (1,475–2,430)

Mixed inoculation
Positive 23.1 (15.9–37.5) 1,271 (1,052–1,618)
Negative 20.0 (14.8–28.4) 1,281 (1,049–1,586)
Combined 21.4 (16.7–28.6) 1,271 (1,095–1,468)

z Confidence intervals (CIs) derived from bootstrapping, except for the im-
plausible results of strain 1A5. Values of βI0 were limited below 100,000
in the fitting procedure.

Estimates of disease transmission rates

In addition to estimating the pathogen dispersal parameter, we
estimated the disease transmission rate. The fitting yielded es-
timates of βI0, from which we extracted the transmission rate
β by dividing βI0 by estimates of I0. We calculated I0 = 249
pycnidia/leaf for 3D7 and I0 = 227 pycnidia/leaf for mixed inoc-
ulation, measured as the mean intensity in flag leaves. Based on
these numbers, we calculated β = 7.7 (unitless) for 3D7 and β =
5.6 for the mixed inoculation treatment.

Genotyping as a confirmatory approach

Genotyping of the 153 reisolated strains (Supplementary File
S1, Appendix A) supported the conclusions drawn from the phe-
notypic data. (i) The inoculated pathogen strains had spread out
from the inoculated area: We detected them in the measurement

FIGURE 3
Visualization of the one- and two-dimensional bootstrap tests.
A, Comparison between two directions of dispersal of the strain
3D7. B, Comparison between 3D7 and mixed inoculation
treatments. Histograms show single-parameter distributions
while heat maps and black dots show joint distributions (10,000
bootstrap replicates). Observations (red line; red cross) in the 5%
extreme of the distribution (shaded area; outside of the dashed
line) are considered significant. The differences are significant
between treatments (B) but not between directions (A). Black
cross in panel A shows a hypothetical observation where the
difference would be deemed nonsignificant for each parameter
separately (in nonshaded area), but the joint test reveals a
significant difference (outside of the dashed line).
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lines, both after inoculations with a single strain (9 isolates out
of 19 were identified as strain 1A5 at x±1 for 1A5 treatment, and
45 out of 55 as 3D7 for 3D7 treatment) and after the mixed inoc-
ulation (two 1A5 isolates and 37 3D7 isolates out of the total 49
isolates sampled at x±1 versus one 1A5 isolate and eight 3D7 iso-
lates out of total 30 isolates sampled at x±3). (ii) The proportion
of identified 1A5 and 3D7 isolates was lower farther away from
the inoculation area in the mixed inoculation treatment. We can
thus conclude that the strain 1A5 spread less successfully than
the strain 3D7: The proportion of the 3D7 isolates in the 3D7
treatment was higher than the proportion of 1A5 isolates in the
1A5 treatment, and the same effect was observed in the mixed
inoculation treatment.

How good are the simplifications?

We compared the three different models (equations 2, 3, 4)
with regard to (i) the accuracy of the estimates and (ii) the com-
putational time.

First, the parameter estimates are virtually the same when using
the two two-dimensional models (line destination versus explicit
destination area), which justifies our use of the slightly simpli-
fied model in equation 3. In contrast, the one-dimensional model
resulted in substantially higher estimates of α (Table 2).

Additionally, the relationship between the population spread
and dispersal parameter α is different between one- and two-
dimensional models. This difference becomes clear, for example,
when dispersal is described based on “mean dispersal distance,”
which is α for a one-dimensional exponential kernel but 2α for a
two-dimensional kernel. For the strain 3D7, the mean dispersal
distances in one- and two-dimensional models would be 15 cm
and 27 cm, respectively. Clearly, a one-dimensional model of
dispersal should not be used for deriving dispersal distances.

Second, regarding the computational time, the one-
dimensional model (equation 4) was fitted to 100,000 bootstrap
datasets on a standard PC in a few hours, whereas fitting the
two-dimensional model (equation 3) required a few days of com-
putational time for only 10,000 replicates. When using the most
complete model (equation 2), it took more than 12 h on a PC to
obtain the estimates for only one replicate (the observed data).
We conclude that considering the spatial extent of the source by
means of two-dimensional modeling pays off in the increased ac-
curacy of the parameter estimates, even though the computational
demand increases.

DISCUSSION

Take-home message

We measured primary, horizontal disease gradients produced
by rain-splash dispersal and subsequent transmission via asexual
spores of Z. tritici in wheat canopy. We achieved the first esti-
mates of the dispersal kernel of the pathogen in field conditions.

We put together an advanced methodological toolbox, but further
measurements in other environments are required for more robust
conclusions. Consistently with studies in controlled conditions,
we report that the characteristic spatial scale of dispersal is tens
of centimeters. Our estimation of the dispersal kernel can be used
to provide biologically plausible parameter ranges for epidemio-
logical models that describe spatial–temporal disease dynamics
within wheat fields.

Measurement of the pathogen population

The use of digital image analysis allowed us to measure pyc-
nidia numbers within individual leaves. This measure represents
an important aspect of STB disease intensity (Karisto et al. 2018;
Stewart et al. 2016): It reflects the population size of the pathogen
resulting from the previous infection cycle and characterizes the
transmission potential of the pathogen in following infectious
cycles. For these reasons, this measure is a proxy for pathogen
reproduction.

A more conventional measure of disease intensity, the pro-
portion of leaf area covered by lesions (PLACL), is associated
with yield loss, but pycnidia numbers are more powerful than
PLACL for predicting the STB epidemic development (Karisto
et al. 2018). This is because PLACL may be affected by other
physiological and developmental processes in plants, as well as
environmental factors. Thus, characterization of pathogen repro-
duction is more relevant for describing epidemic dynamics.

Characterization of effective dispersal

The dispersal kernels estimated here correspond to effective
dispersal of the pathogen population, not to dispersal of spores.
A difference between those may arise from density-dependent
postdispersal mortality (Klein et al. 2013; Nathan et al. 2012).
At high spore densities, which can occur close to the source,
leaves may become saturated, thereby decreasing the infection
efficiency of the spores (Karisto et al. 2019a). Alternatively, dis-
persal of spores could be measured with spore traps placed within
the canopy. However, that would leave unclear how many spores
attach to healthy plants and how many of them are successful
in causing lesions and pycnidia. Using healthy plants as spore
traps leads to measurement of the combination of dispersal and
infection processes that is more epidemiologically relevant.

Estimation of dispersal and transmission parameters

Dispersal parameter estimates α3D7 = 13.5 cm and αmix =
21.4 cm correspond to half distances 22.7 cm and 35.9 cm for 3D7
and mixed inoculation treatments, respectively (half-distance ≈
1.7 α in 2D; Karisto et al. 2019b). Fitt et al. (1987) report a no-
tably shorter range of 6 to 16 cm for half-distances of dispersal of
splash-borne fungal spores reviewed in the literature, including
estimates for Z. tritici from Brennan et al. (1985), but they used

TABLE 2

Comparison of the parameter estimates between different functionsz

Mixed inoculation treatment B 3D7 treatment

Equation α (cm) βI0 (pycnidia/leaf) α (cm) βI0 (pycnidia/leaf)

Equation 2, 2D 21.4 1,265 13.5 1,889
Equation 3, 2D 21.4 1,271 13.5 1,915
Equation 4, 1D 24.6 1,131 15.1 2,031

z Estimates with combined data of the two directions. “2D” and “1D” stand for two- and one-dimensional models, respectively.
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a one-dimensional model of dispersal. Our one-dimensional es-
timates (Table 2) correspond to half-distances of 10.5 and 17.0
cm for 3D7 and mixed inoculation, respectively (half-distance ≈
0.69 α in 1D). Thus, experiments in controlled conditions appear
to translate well into the field, but details of the models need to
be considered for a sound interpretation of results. We computed
the one-dimensional estimates solely to compare them to results
of previous studies, although we consider the two-dimensional
estimates to be more accurate.

The estimated transmission rates were β3D7 = 7.7 and βmix =
5.6. Parameter estimates for the strain 1A5 were not realistic.
We assume that these nonrealistic results were caused by issues
in the fitting due to low infection success of 1A5. Strain 1A5 is
known to produce fewer and smaller pycnidia than strain 3D7
on cultivar Runal in greenhouses (Stewart et al. 2018), which
is further supported by our phenotypic and genotypic data in
field conditions. The observed lower transmission of the mixed
inoculation probably resulted from the contrasting reproductive
capacities of the two strains. Thus, differences in reproductive
capacities between different pathogen strains (usually assessed in
controlled conditions) may have an impact on epidemic dynamics
in the field and thereby influence population composition over the
course of a seasonal epidemic.

Although the horizontal dispersal measurements made in pre-
vious experimental studies were useful, they are difficult to ex-
trapolate to real field conditions for two reasons. First is that the
modeling approaches did not consider the spatial extent of the
source area as we did here but assumed a unique point source
(Karisto et al. 2019b). Second is that a plant canopy, acting as a
barrier that limits the effective dispersal distance, was not always
included in the design (e.g., Brennan et al. 1985).

STB development depends on weather conditions (Henze
et al. 2007). Additionally, the disease levels within the source
and along the disease gradient were measured only on upper leaf
layers, but dispersal occurred likely to, and possibly also from,
the lower leaf layers as well, which were not included in our es-
timates of transmission rates. For all these reasons, the relative
differences between transmission rate estimates in our experi-
ment are informative, whereas their comparison with transmis-
sion rates measured in other studies is of limited value.

Differences in dispersal

According to our analysis, the mixture of the two strains spread
further than the single strain 3D7. The difference may arise from
various sources. Density-dependent effects may have flattened
the disease gradient in the mixed inoculation treatment, for ex-
ample, if the mixed pathogen population is more sensitive to sat-
uration at high population densities close to the inoculated area
due to cross-suppression between the two pathogen strains. In this
case, the beginning of the gradient, where the population density
is highest, would experience stronger saturation after mixed in-
oculation compared with single-strain inoculations. That would
result in lower overall transmission but also a flatter gradient
(i.e., longer dispersal), as the tail of the gradient would be rel-
atively stronger after the mixed inoculation compared with the
single-strain inoculations due to relaxed cross-suppression. Inter-
estingly, these expected patterns matched with our observations
in the present study.

Furthermore, sexual reproduction in the mixed inoculation
treatment could result in a shallower gradient due to wind-
dispersed ascospores, which are expected to have a much higher
dispersal distance. The average latent period following infections
by ascospores was shown to be longer than the latent period asso-
ciated with asexual pycnidiospores (Morais et al. 2015), but the

distribution of ascospore latent periods might still be wide enough
to contribute to our observed gradient (Suffert and Thompson
2018). Ultimate causes of the difference remain unknown.

Sampling distances

The measurement lines were at closest 20 ± 5 cm from the edge
of the inoculated area. Measuring the disease intensity closer
to the source and even inside the source might have improved
the estimates, as the differences between the gradients are more
pronounced close to the source. However, closer to source, the
reliability of measurements may suffer from saturation and from
dispersal via direct contact (Fitt et al. 1989).

We also measured the disease inside the inoculation area, but
those data points were excluded from fitting because our aim
was to analyze only the newly spread infection and capture the
primary disease gradients. The increase of disease intensity in
the source area from t0 to t1 was not only due to secondary in-
fections but likely also from latent infections that can become
symptomatic after an extended period (Karisto et al. 2019a). An
additional reason for excluding data at x0 is that saturation effects
are expected to be strongest there.

Spatially explicit modeling

We used spatially explicit modeling to account for the spatial
extent of the source. This allowed us to parameterize the disper-
sal kernels, without needing to assume a point-like source. Using
considerably large sources, we created sufficiently strong, mea-
surable disease gradients in two out of three treatments. Further
extension of the source might have created a sufficiently strong
gradient for the strain 1A5 too. Overall, using an extended source
in combination with spatially explicit modeling provides a major
improvement for measuring dispersal over small scales.

Statistical advances

The bootstrapping methods allowed us to test for differences
in our parameter estimates and the associated uncertainties in a
robust manner without making any assumptions about underly-
ing distributions. Computationally intensive bootstrapping with
a large number of replicates (100,000) is possible using modern
computing resources. Nonparametric bootstrapping is a useful
alternative to standard parametric tests, which are often used in
biology even when their assumptions are violated. Moreover, we
adopted a two-dimensional hypothesis test based on a kernel den-
sity estimate of the bootstrap parameter distribution. This allowed
us conduct joint testing for differences in two parameters simul-
taneously, which is likely to be more robust than the combination
of two one-dimensional tests for each of the parameters sepa-
rately. This is demonstrated in the example where a combination
of one-dimensional tests would fail to reject the null hypothesis
(Fig. 3A). The provided source code and raw data will facilitate
the application of these methods to other contexts.

Implications for epidemiology and control

According to our estimates, the median dispersal distance of
new infection from a focal source was around 30 cm. However,
the limit of 95% of new infections would extend up to 1 m (equa-
tion A3; Karisto et al. 2019b). In the second dispersal step, not
only will the infection spread further outward, but the secondary
spread within the area covered by the first step would likely cause
significant damage (Shaw and Royle 1993), and this is when a
clearly visible focus of the disease can be seen (Zadoks and van
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den Bosch 1994). Thus, when one observes a visible focus in the
canopy, the spread has likely already happened at least one step
further, considering latent infections. This should be considered
when aiming for spatially targeted control of crop diseases in the
context of precision agriculture (e.g., based on aerial detection
and quantification of symptoms; Anderegg et al. 2019; Yu et al.
2018). Safety margins around a disease focus depend on the ex-
pected dispersal distance of the pathogen, which highlights the
importance of accurate characterization of plant pathogen disper-
sal in field conditions.

We note that the presented data consist of only a single time
point in a single geographic location, although thoroughly repli-
cated within that location. Our results do match well with the
previous experimental outcomes in controlled conditions, but the
degree to which they can be generalized is somewhat limited.
In different weather conditions (especially more rainy and thus
more conducive to disease) and on other wheat genotypes (those
more or less susceptible to STB or representing other canopy
architectures), dispersal distances are likely different, but we
cannot quantify these differences based on the data we acquired
here.

Outlook

Natural populations of Z. tritici are extremely diverse, both
phenotypically and genetically (Hartmann et al. 2017; Karisto
et al. 2018). Hence, it would be interesting to conduct similar
measurements in a number of other Z. tritici strains under various
conditions in the field to characterize the diversity of dispersal
and transmission processes. The methodology developed here
can also be applied to other plant pathosystems. We hope that
our study, with the available raw data and source code of the
analyses, will inspire further measurements of plant pathogen
dispersal.
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