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Abstract

The functional diversity of microbial communities emerges from a combination of the
great number of species and the many interaction types, such as competition, mutu-
alism, predation or parasitism, in microbial ecological networks. Understanding the
relationship between microbial networks and the functions delivered by the microbial
communities is a key challenge for microbial ecology, particularly as so many of these
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interactions are difficult to observe and characterise. We believe that this ’Dark Web’ of
interactions could be unravelled using an explainable machine learning approach,
called Abductive/Inductive Logic Programming (A/ILP) in the R package InfIntE, which
uses mechanistic rules (interaction hypotheses) to infer directly the network structure
and interaction types. Here we attempt to unravel the dark web of the plant micro-
biome in metabarcoding data sampled from the grapevine foliar microbiome. Using
synthetic, simulated data, we first show that it is possible to satisfactorily reconstruct
microbial networks using explainable machine learning. Then we confirm that the dark
web of the grapevine microbiome is diverse, being composed of a range of interaction
types consistent with the literature. This first attempt to use explainable machine learning
to infer microbial interaction networks advances our understanding of the ecological
processes that occur in microbial communities and allows us to hypothesise specific
types of interaction within the grapevine microbiome. This work will have potentially
valuable applications, such as the discovery of antagonistic interactions that might be
used to identify potential biological control agents within the microbiome.

1. Introduction

The high taxonomic, morphological and functional diversity of
microbial communities (Konopka, 2009) emerges from a combination of
the great number of species and the many interaction types in the eco-
logical networks of the microbiome. These ecological interactions result
in economically and socially important ecosystem functions and disease
regulation (Hacquard et al., 2017; Ishaq, 2017), and structure the com-
munities of microbial organisms observed in nature (Faust and Raes,
2012). The abundance of any two species in a community will be
determined by whether they participate in a pairwise interaction and the
precise ecological interaction type, as well as being influenced by other
biotic and abiotic factors (de Vries et al., 2018). Where the abundance of
both species is observed to decline, this might be hypothesised to come
about as a result of a competitive interaction. Predation could lead to an
increase in abundance of one species at the expense of the other (Faust
and Raes, 2012). Mutualistic interactions might result in both species
increasing in abundance, while amensalism and commensalism would
cause a differential benefit or cost to the abundance of only one of the
species. It is the mixture of all these different interactions, acting between
all species in the ecological network simultaneously, which determines
the species richness, diversity patterns, functions and dynamics of
microbial communities.
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Understanding the relationship between microbial interactions and the
functions delivered by the microbiome is a key challenge for microbial
ecology. We expect, for example, that interactions such as competition or
predation will be associated with ecosystem functions like biological
control of microbial pathogens (Musetti et al., 2007; Poveda et al., 2021).
The great challenge is that these interactions can be difficult to evaluate
directly, due to the complexities of observing microbial species in-situ or
culturing microbial species in the laboratory (Crhanova et al., 2019; Wu
et al., 2019). Moreover, the types of interaction are well described in the
macrobial world, but their microbial equivalent may not be obvious. Many
microbial taxa also remain unknown, forming what has been termed
microbial “Dark Matter” (Marcy et al., 2007). As a consequence, much of
the diversity and structure of microbial ecological networks are unob-
served; they are “Dark Webs”. This contributes to our poor understanding
of these systems and limits the advance of the science of the microbiome. In
this paper, we attempt to unravel the dark web of the microbiome using
direct inference of specific types of ecological interactions from DNA
metabarcoding data.
Analysis of microbial species and communities in situ has been greatly

facilitated by metabarcoding surveys of environmental DNA samples using
generic primers (Ruppert et al., 2019; Thomsen and Willerslev, 2015). The
sequencing yields information on the copies of each DNA sequence cor-
responding to quantitative information for the count of the different taxa.
Pipelines like VSEARCH (Rognes et al., 2016) cluster the counts into
operational taxonomic units (OTU) by their similarity (Pauvert et al.,
2019), under the assumption that sequences with the greatest similarity
represent phylogenetically similar organisms (He et al., 2015). Other
pipelines like DADA2 (Callahan et al., 2016) infer high resolution versions
of OTUs, called amplicon sequence variants (ASVs), which vary due to
possible sequencing errors (Davis et al., 2018). DNA sequencers can only
process a given number of DNA sequences in any given metabarcoding
run. The sequencing data produced is therefore compositional (Gloor
et al., 2017), reflecting the relative but not absolute abundance of the
species within each sample, and such biases of compositionality have
typically been controlled using log-transformation.
Statistical associations between counts have been used to infer possible

interactions between OTUs (Faust and Raes, 2012; Röttjers and Faust,
2018; Weiss et al., 2016). SparCC (Friedman and Alm, 2012) infers net-
works using linear Pearson correlation between the log-transformed
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components, for example. CCLasso uses Lasso to infer the correlation
network (Fang et al., 2015) and SPIEC-EASI uses inverse covariance or
neighbourhood selection and StARS to obtain the most stable network
(Kurtz et al., 2015; Liu et al., 2010). PLN-network uses the Poisson-
LogNormal model, where sequence counts follow Poisson distributions,
and introduces sequencing depth as an offset. It then uses methods like
StARS or EBIC for network selection (Chiquet et al., 2019). The fra-
meworks for network inference, such as those described above, have robust
theoretical statistical foundations, and the tools are typically flexible, fast
and robust to noise in the metabarcoding sample data (Dohlman and Shen,
2019; Weiss et al., 2016). The ecological importance of taxa (nodes) and
associations (edges) of the networks that are produced need considerable
interpretation and post-analysis, however. Positive or negative statistical
associations do not indicate causality and are not specific indicators of a type
of ecological interaction. This interpretation problem resembles the black
box problem (Castelvecchi, 2016). The tool may detect that something is
happening, but it cannot provide a mechanistic understanding of the
underlying process. A mechanistic interpretation is only provided post-hoc
via the literature and/or subjective expert knowledge (Tamaddoni-Nezhad
et al., 2021). Here, we use a form of Explanatory machine learning
(EXML) (Ai et al., 2021; Gilpin et al., 2019), called Abductive/Inductive
Logic Programming (A/ILP), to circumvent the black box problem by
detecting and classifying ecological interaction types directly.
A/ILP infers species interactions by searching for patterns in data using

ecological rules or hypotheses for each type of interaction, defined a priori
by the user. Such hypotheses can reach a large complexity degree,
depending on the variables entailed. However, simpler explanations of a
phenomenon are normally more plausible, or at least, should be the ones
first tested. In consequence, the hypotheses of interactions used in this
work limit the complexity by, (1) focusing on data obtained from samples
sharing the same abiotic conditions. This removes, or greatly decreases the
appearance of spurious interactions caused by the species affinity/disaffinity
to certain abiotic conditions; (2) Only considering as hypothesised inter-
actions the relations that cause a direct effect on the species abundance.
Once the hypotheses of interaction are defined, the link between logical
ecological rules and data patterns is straightforward. For instance, a com-
petition interaction between any two species might be hypothesised to
cause a decline in both their abundances when the species co-occur. In data
of many samples from a similar environment, we can calculate directions of
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change in species abundances between all pairs of samples and use this
pattern of change to hypothesise species interactions. A species abundance
might go up, down or stay the same between any two samples, from sample
X to Y, for example. Under the assumption that species 1 and 2 are
undergoing competition, then we might expect that a down change in
abundance for species 1, from sample X to Y, would be accompanied by a
down for species 2. Finding such a pattern of change consistently across
many sample pairs, might then allow us to infer that the patterns in species
abundances are due to competition between species 1 and 2. Different rules
could also be used to infer other interaction types from the up, down or
stay pattern. This link between rule and pattern in the data thereby pro-
vides informative, explainable networks with network edges that represent
hypotheses of ecological interaction types.
A/ILP has previously been used to provide an explanation of metabolic

regulation (Tamaddoni-Nezhad et al., 2006) and invertebrate food webs
(Bohan et al., 2011). It has never been used on microbial community
sequence data, however, or to infer numerous types of interaction simul-
taneously. This has in part been due to the intensive computational
requirements of EXML approaches and their lower robustness to ecological
noise. It may also be due to the much more limited experience of logical
approaches amongst ecologists.
We tested the A/ILP approach, detailed here through two steps. The

first step uses synthetic data for different types of interactions, in order to
verify that we can both detect and classify interactions by their correct type,
with appropriate levels of significance. The A/ILP is then used at the
second step to unravel the dark webs of the different interaction types from
eDNA sample data. The eDNA was sampled from leaves of grapevine, Vitis
vinifera L. during downy mildew epidemics, caused by Plasmopara viticola
(Barroso-Bergadà et al., 2023).

2. Materials and methods

2.1 Hypothesis framework for learning microbial
ecological interactions using abductive logic

Explainable approaches to inferring ecological interactions start with a clear
declaration of the rules for an ecological interaction between any two, or
possibly more, OTUs (Faust and Raes, 2012; Tshikantwa et al., 2018). We
posit that the minimum common facts for all hypothesised interactions are
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that: (i) the two OTUs undergoing an interaction should co-occur in at least
one sample; and, (ii) at least one of the OTUs undergoes a change in abun-
dance. Abundance is understood as a measure of the size of an OTU popu-
lation in a sample, derived from the copies of OTU sequences in each sample.
Thus, to evaluate change in abundance of all OTUs, across all samples, the
copies of an OTU and the total sequence depth in any two samples, are used
to construct a contingency table, with the significance of the change in OTU
abundance between the samples being evaluated by a χ2-test of independence.
Thus, the compositional biases inherent in treating DNA sequences as relative
counts are addressed by assessing the independence of the OTU change of
counts between samples from the changes in the samples sequencing depth.
Significant changes are classified either as an increase (up), or as a decrease
(down), in terms of the relative abundance of the first sample compared to the
second. Symbolically, this can be expressed as the logic clause abundance
(s1, x, y, dir) where s1 is any given OTU, (x, y) are two samples and dir
describes the direction of abundance change (up or down) from sample x to
sample y. Abundance changes are computed in this way across all OTUs in all
samples. I In addition, the presence (yes) or absence (no) of an OTU in sample
x can be expressed as the clause: presence (s1, x, yes/no).
The abductive logic process uses these clauses to find possible expla-

nations (effects) for the observed changes in abundance and presence using
hypotheses for ecological interactions that reflect the existing state of
ecological knowledge. We hypothesise that an interaction will have
occurred where the presence of one OTU s1 produced a consistent effect
on the abundance of OTU s2 in the samples. The relationships for an
interaction effect can be described as:

ifeffect_up(s1, s2) :
abundance(s2, x, y, up)

presence(s1, x, no)
presence(s1, y, yes)

effect_down(s1, s2) if:
abundance(s2, x, y, down)

presence(s1, x, no)
presence(s1, y, yes)

(1)

Here, the upper part of the relation describes how OTU s2 has a greater
abundance in sample y than in sample x, due to the presence of OTU s1 in
sample y and its absence in sample x. Should this pattern be consistent
across different sample pair combinations, then the abduction process
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would infer an up effect of s1 on s2. A pattern is considered consistent if the
number of observations supporting such pattern is considerably larger than
the number of observations contradicting it.
The abduction process computes a compression value as a numerical

measure representing the amount of observations that support each
abduced effect (Muggleton and Bryant, 2000), and therefore indicates how
likely an interaction is to have occurred. To be likely, an interaction should
give a greater effect in one direction than the other, all other things being
equal. We therefore compute an overall statistic for the likelihood of
interaction, I, as the difference between the compressions for the up and
down effects (Barroso-Bergada et al., 2022).

2.1.1 Detection of significant interactions
For each pair of OTUs, the value of I is treated as the weight of a directed
edge in a network. Setting a threshold, λ for I, selects inferred edges. λ= 0
would select all possible edges, while a λ=max(I) would deliver an empty
network with no edges selected. max(I) is dependent on the number of
observations, and it is not possible to establish a common λ for the datasets. We
therefore select significant edges empirically using a subsampling methodology
called StARS (Liu et al., 2010). StARS subsamples 80% of the samples,
multiple times, and performs the abduction of network edges. The most stable
network of interactions is then identified using the frequency that the edges
appear at different values of λ. We use 50 resamplings and 50 λ values
increasing from 0 to max(I). The standard number of subsamples and length of
lambda path was selected with a restrictive stability threshold of 0.01 to
minimise the number of false positive interactions (Müller et al., 2016).

2.1.2 Classification of interaction types
The StARS procedure selects those edges of a network that have a consistent
direction of effect and may therefore be treated as significant. The direction of
these detected interactions, up, down or no effect may be used to classify
interaction types directly (Derocles et al., 2018; Faust and Raes, 2012). Thus,
effect_up(s2, s1) and s2 effect_up(s1, s2) might be classified as mutualism since
both OTUs benefit. effect_down(s2, s1) and effect_down(s1, s2), by contrast,
could be assigned to a competition interaction. Across all possible inferred
pairwise combinations of up, down and no change, it becomes possible to
classify directly ecological interactions of mutualism, predation, competition,
commensalism and amensalism (Table 1, Faust and Raes, 2012), that can often
not be observed or measured in microbial experiments.
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2.1.3 Modelling ecological exclusion
Ecological interactions that cause the abundance of an OTU to decrease
can lead, in extremis, to its exclusion. Some OTUs may also depend upon
the presence of a second OTU in order to exist within a sample. The
hypotheses of interaction do not explicitly account for this possibility that
could affect the numbers of zeros in the data and the detection of inter-
actions. We expand the hypothesis of interaction framework to entail
exclusion and mutual dependence cases. This can be described by logical
clauses with the form abundance(s1, x, y, app/dis), where app symbolises a
qualitative change from 0 to a numbers of counts of OTU s1 between the
samples x and y, and dis symbolises the change from a positive number of
counts to 0. Significance of change is evaluated using a χ2-test of inde-
pendence. The theory is expanded as:

effect_up(s1, s2) if:
abundance(s2, x, y, up/app)

presence(s1, x, no)
presence(s1, y, yes)

effect_down(s1, s2) if:
abundance(s2, x, y, down/dis)

presence(s1, x, no)
presence(s1, y, yes)

(2)

It is important to note that for this ‘with exclusion’ formulation of the
theory the effect caused by s1 on s2 or vice versa, is consistent irrespective
of whether the result is an up/down or app/dis. This explicitly includes the
possibility that an interaction could cause both a reduction in the abun-
dance of an OTU, and, ultimately, its exclusion. This formulation also
allows the I statistic to be computed as previously described.

2.1.4 Implementation of the abductive process for inferring ecological
interactions

A full description of the logical process of abduction and of A/ILP is not
given here, but can be found in (Muggleton and Bryant, 2000;
Tamaddoni-Nezhad et al., 2006). We detail the specific implementation of
abductive network inference in a new R package, InfIntE (INFerence of
INTeractions using Explainable machine learning, Fig. 1). InfIntE parses
the OTU count data into logical clauses using the R base package tools
(Core Team, 2018). The logical clauses and interaction hypotheses are run
in PyGol, which implements A/ILP based on Meta Inverse Entailment
(MIE). The hypothesis searching mechanisms of MIE combining both
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top-down and bottom-up approaches as the hypothesis is more generalised
than bottom clause and more specific than meta theory (Varghese et al.,
2022).
InfIntE uses the R package reticulate (Ushey et al., 2022) to provide the

logical clauses to PyGol and then retrieve the abduced compression values
and I statistic. Pygol searches for the best abducible effects on OTU
abundance that explain the observation using maximum compression.
Model selection by StARS is then conducted in the R pulsar package
(Müller et al., 2016). A custom pulsar function uses the meta clause to
abduce subsets of the OTU table and retrieves the interaction networks
along the λ path.

2.2 Experiment 1: Generating synthetic, ecological-like data
for verification

Numerous approaches have been proposed to simulate the effect of
interactions in metabarcoding data, based on the assumption that interac-
tions cause a change in the sequence counts of OTUs involved. We use the
broadly-accepted linear ecological-like models proposed by Weiss et al.
(2016) (Tackmann et al., 2019; Weiss et al., 2016). These models simulate
changes in counts in an OTU table, caused by specific interaction types.
The Weiss et al. (2016) models produce the OTU tables for the counts of
p non-interacting OTUs over n samples using a log-normal distribution

Fig. 1 Schematic diagram representing the InfIntE pipeline. The pipeline performs:
conversion of abundance data contained in the OTU table to logical clauses, based
upon our ecological knowledge; abduction of interaction effects from the logical
clauses using PyGol; selection of important edges using StARS; and the direct clas-
sification of interaction types depicted by the different edge colours. Arrows show the
direction of effects or interactions. Edges without an arrow represent interactions
without direction.

10 Didac Barroso-Bergada et al.



(Shoemaker et al., 2017). These counts are then forced to increase or
decrease as a function of the counts of the interacting OTUs, modulated by
a strength of interaction, s. The generated OTU tables consist of abun-
dances of p OTUs simulating either amensalism, commensalism, compe-
tition or mutualism pairwise interactions as proposed in Faust and Raes
(2012). Each simulated interaction type has a different effect on the
abundance of the OTUs involved in the interaction. For example, in
mutualism, the abundance of both OTUs will increase in the samples
where they co-occur. To introduce compositionality to the data, the
relative counts of an OTU in a sample are used as a probability to sample a
multinomial distribution at a common sample size.
The number of samples is an important variable in network inference

(Berry and Widder, 2014). We generate OTU tables with different number of
samples, n, to assess the effects of sampling effort. For each n= 20, 30, 40.90,
we create three OTU tables with strengths of interaction, s= 2, 3 and 5, and
p= 80 OTUs to obtain a total of 72 OTU tables incorporating the four types
of interactions. The number of p= 80 OTUs was chosen to reflect the
number of abundant OTUs typically observed in real metabarcoding microbial
datasets from agriculture, such as the one used in this work.

2.2.1 Inference and detection of interactions from simulated data
InfIntE was used to infer interaction networks for each of the simulated
OTU tables, for interaction hypotheses both with and without exclusion.
The area under the receiver operating characteristic curve (AUC) (Fan
et al., 2006) was then evaluated. The AUC was treated as a measure of how
well the tool detected interactions that we knew to be present (real), or
absent (false) in the simulated dataset. Interaction inference was also done
for the statistical inference tools, SparCC (Friedman and Alm, 2012) and
SPIEC-EASI glasso (Kurtz et al., 2015), as a comparison for interaction
detection between logical and statistical networks inference tools. The
SparCC inference was done in FastSpar v1.0.0 (Watts et al., 2019) and
SPIEC-EASI glasso was run in the R package SpiecEasi v1.1.2, both with
their respective default settings. The I statistic was computed with and
without exclusion hypotheses in InfIntE. SparCC correlations were
obtained directly and SPIEC-EASI correlations were obtained from the
inverse covariance matrix at λ= 0. Given that these logical and statistical
tools produce either classified interaction or correlational networks
respectively, the largest value of I or correlation, obtained for each pair of
OTUs, was used to compare the performance of the tools.

Explaining Microbial Interaction Diversity 11



2.2.2 Evaluating the accuracy of interaction detection and
classification in simulated datasets

For interactions with and without exclusion, the accuracy of InfIntE and
the StARS procedure to detect simulated interactions, was computed using
the function:

= +Accuracy (TP TN)/N (3)

where true positives, TP, are the true real simulated interactions detected by
the StARS selection, TN are the true non-interacting pairs of OTUs within
the simulated dataset, and N is the total number of possible interactions that
might exist in a fully saturated network. Accuracy was selected as an overall
measure to summarise the total capacity of the tools to accurately detect
interactions. The evaluation of SparCC was performed using the default
bootstrapping procedure, with 999 permutations. The SPIEC-EASI pipeline
uses the StARS procedure to select important interactions as a function of
edge stability. The default parameters of StARS selection in SPIEC-EASI are
20 subsamples and a stability threshold of 0.05.

2.3 Experiment 2: Inferring networks from real data
We used InfIntE to reconstruct microbiome interaction networks occur-
ring in leaves of European cultivated grapevine, Vitis vinifera. We recon-
structed 9 networks, each corresponding to a different vineyard in France,
using qPCR and metabarcoding data described and analysed in Barroso-
Bergadà et al. (2023). This dataset includes the relative abundance of 650
fungal ASVs in 534 leaf samples (60 per vineyard). All leaf samples collected
within a vineyard were collected in similar conditions (on the same day and
on the same rows of vines). The abundance of the oomycete pathogen
species Plasmopara viticola was evaluated by qPCR in each leaf sample. For
each vineyard, patterns of change in the abundance of fungal ASVs
between samples were calculated as described above. In addition, patterns
of change in the abundance of P. viticola between samples were computed
using the qPCR data. The up/down was considered significant if the
logarithmic absolute amount of P. viticola DNA differed by an absolute
value of 0.05 between samples.
Fungi–fungi interaction networks, including the oomycete P. viticola,

were then inferred using the InfIntE package (https://github.com/didacb/
InfIntE). Network inference was performed for the top 80 most abundant
fungal ASVs, using all 60 samples from each vineyard.

12 Didac Barroso-Bergada et al.
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2.3.1 Evaluating the significance of interactions using predictions of
change

Most microbial community interactions are unknown or poorly
understood. There is no complete and understood microbial network
that might be used to evaluate the accuracy of the interactions detected
and classified by InfIntE, of which we are aware. It is necessary,
therefore, to evaluate the significance of inferred interactions using the
data itself. Changes in OTU abundance, caused by an ecological
interaction, can be used to compute predictive accuracy. InfIntE does
this using a k-fold cross-validation that predicts abundance changes
using the I statistic. Abundance change observations are randomly
divided into 5 equal size, 20%, folds of the dataset. Interaction inference
is then performed using InfIntE on 4 random selections of these folds,
leaving one fold for validation. The I statistic for the effects of OTUs
on, for example, s1 in sample y, are retained and the up/down is pre-
dicted from the I sum value of effect up and effect down. Predictive
accuracy is then tested by computing the number of correctly predicted
abundance changes across the validation fold.

2.4 Statistical analysis
All statistical analyses were conducted in the R v4.1.3 (Core Team, 2022).
Plots were made using ggplot2 v3.3.5 (Wilkinson, 2011) and cowplot
v1.1.1 (Wilke, 2019). The AUC of each inferred network was measured
using the pROC package v1.18.0 (Robin et al., 2011).

3. Results

3.1 Experiment 1: Generating synthetic, ecological-like
networks

3.1.1 Modelling exclusion increases I statistic predictive power
The InfIntE AUC for the I statistic was higher when interactions were
inferred with than without exclusion (Fig. 2A). This difference was
greater for datasets with higher strengths of interaction and for smaller
sample sizes. Sample size had an important effect on the AUC, inde-
pendent of the strength of interaction and the hypothesis of interaction
used, plateauing at about 60 samples. The InfIntE AUC varied by up to
20% between hypotheses without and with exclusion and from 20 to 90
samples. The AUC obtained for the InfIntE I statistic with exclusion

Explaining Microbial Interaction Diversity 13



Fig. 2 Relationship between number of samples and interaction inference performance for
different strengths of interaction. Datasets were computer-generated simulating four dif-
ferent interaction types: amensalism, commensalism, competition and mutualism. (A) Area
under the roc curve values (AUC) (Fan et al., 2006) obtained by I statistic with and without
exclusion. Larger AUC values represent better specificity and sensitivity in interaction
detection. I statistic is used by InfIntE as a numeric measure of interaction. (B) Area under
the roc curve values (AUC) obtained by InfIntE’s I statistic and SparCC and SPIEC-EASI
correlation like measures. InfIntE used the hypothesis of interactions including exclusion.
SparCC and SPIEC-EASI were executed with default settings. (C) Accuracy of interaction
detection computed as described in Section 2.2.2. InfIntE used the hypothesis of interac-
tions including exclusion. SparCC and SPIEC-EASI were executed with default settings.
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was similar to the AUC obtained by the correlation values computed in
SparCC or in SPIEC-EASI (Fig. 2B). The AUC for SparCC and
SPIEC-EASI, varied with the number of samples. The strength of
simulated ecological interaction had a negligible effect. No significant
difference was found in AUC values between the three network
inference tools.

3.1.2 Accuracy of InfIntE detection with sample size
The accuracy of InfIntE with exclusion varied significantly with the
sample size (Fig. 2C), increasing to a plateau at approximately 60 samples.
InfIntE accuracy did not change with the strength of simulated interac-
tion. SparCC and SPIEC-EASI showed levels of accuracy that did not
depend on the number of samples, but SPIEC-EASI accuracy was higher
than SparCC. InfIntE accuracy was lower than SPIEC-EASI and SparCC
at small sample sizes, but was comparable to SPIEC-EASI at higher
sampling effort.

3.1.3 InfIntE classification of simulated interactions
The InfIntE classification of interactions at 60 samples, was dependent on
the interaction type simulated (Fig. 3). More than 90% of the synthetic
commensalism interactions were detected, and of all of these were classified
correctly. Most mutualism interactions were detected by InfIntE, and the
majority were classified correctly. Those wrongly classified were classed as
commensalism. Slightly less than 20% of competition interactions were
detected by InfIntE, but nearly all were classified correctly. Synthetic
amensalism interactions were not detected by InfIntE. InfIntE produced
low numbers of false positives. Where these occurred, all detected links
were classified as commensalism.
SparCC detected as associations almost all the synthetic mutualism,

commensalism and competition interactions. About 25% of the simulated
amensalism interactions were detected. This detection came at the cost of
an elevated rate of false positive detections. SPIEC-EASI showed associa-
tion detection performance similar to InfIntE, detecting associations for the
majority of synthetic commensalism and mutualism interactions. It had
similar difficulty in detecting synthetic associations from competition and
poor performance in detecting amensalism. SPIEC-EASI produced very
low rates of false positives.
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3.2 Experiment 2: Inferring complex networks, the Dark Web,
from real data

3.2.1 Structure of interaction types in the foliar networks of grapevine
The interaction networks inferred for each of the nine vineyards (Fig. 4),
using InfIntE, comprise all the different types of ecological interaction
(Derocles et al., 2018, Table 1). The networks did not display unconnected

Fig. 3 Nightingale rose charts comparing the percentage of correct interaction clas-
sification by types. OTU tables were synthetically generated simulating groups of 60
replicated samples mixing four different types of interactions: amensalism, com-
mensalism, competition and mutualism. Inference of interactions was performed
using InfIntE, SparCC and SPIEC-EASI. First row charts show the percentage of each
interaction type correctly detected by each tool. Second row charts show the per-
centage of false positives proposed by each tool over the total possible false positives.
Each petal of the rose charts is coloured in function of the classification of the
detected interaction type given for each inference tool. InfIntE automatically classifies
interactions in amensalism, commensalism, competition and mutualism while SparCC
and SPIEC-EASI return positive (+) or negative (−) associations. InfIntE correctly detects
and classifies most mutualism and commensalism as well as around 20% of compe-
tition with few false positives. SparCC detects most interactions at the expense of a
large amount of false positives. SPIEC-EASI has a similar performance to InfIntE, but
classifying the interactions only in positive and negative correlations.
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subnetworks, and the total number of hypothesised interactions varied
from 551 to 1410, depending on the vineyard. The predominant inter-
actions were commensalism and competition, each representing at least
30% of the total number of interactions in most networks. Amensalism
interactions never made up more than 17% of interactions and mutualism
varied from 2.5% to 8.7%. Interactions classified as predation never
represented more than 0.7% of the inferred interactions. Predictive accu-
racy was estimated to be approximately 75% of the observations in the test
fold (Fig. 5), when at least 50% of the sample dataset was used. No dif-
ference in accuracy was found between the vineyards for a given standard
percentage of the sample.

Fig. 4 Interaction networks predicted for each of the 9 different vineyards in the
dataset, inferred using InfIntE. Each vineyard dataset was composed by 60 samples. The
edge colours follow the interaction colour typology in A. The pie chart associated with
each network indicates the relative percentage of each interaction type in the network.
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3.2.2 Identifying potential biological control agents using InfIntE
inference

A total of 20 fungal ASVs, that could be assigned to 12 different fungal
species and 2 genera, were identified, using the InfIntE package, as
potential antagonists of P. viticola in at least one vineyard (Table 2). The list
of potential antagonists included ASVs assigned to Aureobasidium pullulans,
the Alternaria genus and the Fusarium genus, in coherence with expectations
from the grapevine literature (Ghule et al., 2018; Harm et al., 2011;
Musetti et al., 2006). It also included ASVs assigned to the genera Cla-
dosporium (Amanelah Baharvandi and Zafari, 2015; Becker et al., 2020;
Köhl et al., 2019), Phlebia (White and Boddy, 1992), Sporobolomyces
(Filonow et al., 1996; Janisiewicz and Bors, 1995; Li et al., 2017) and
Vishniacozyma (Becker et al., 2020; Gramisci et al., 2018; Lutz et al.,
2013), in coherence with the biocontrol literature for other foliar patho-
systems. ASVs assigned to Mycosphaerella tassiana and two species of the
Filobasidium genus were also classified as antagonistic to P. viticola by
inference, but had not previously been described in the literature.

4. Discussion

Our work shows that it is possible to begin to explore the Dark Web
of microbial interactions, through the direct classification of interactions
using explainable machine learning. The combination of A/ILP and simple

Fig. 5 Accuracy of abundance change prediction in grapevine metabarcoding data as
a function of the number of observations used for the inference. Each dataset con-
sisted in 60 samples. Each point presents the mean accuracy of prediction for different
fold combinations of the 9 vineyards.
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hypotheses for ecological interactions, and coded within the InfIntE R
package, works satisfactorily. It shows accuracy of detection and classifi-
cation of simulated interactions, given enough samples. We use it to detect
and classify interaction types from real DNA sequence data. Validation
reflects well the interactions that have previously been proposed in lit-
erature (Table 1). Our explainable machine learning is a step towards
making the link between generic ecological hypotheses that scientists
define and the inference of specific types of interaction within the
microbiome that can be validated through experimentation. We find that
the dark web of the microbiome is diverse, being composed of a range of
interaction types consistent with the hypotheses of interaction we propose.
These include antagonistic interactions that might be used to identify
biocontrol agents of the pathogen P. viticola within the foliar microbiome
of grapevines (Table 2).
The work also shows potential for improvement, by refining the

description of existing hypotheses and the definition of new hypotheses for
types of interaction not considered here. Explainable A/ILP emphasises the
description of ecological interactions. The simple interaction hypotheses
we have defined describe the process by which two species interact,
contingent on the way that their respective abundances change (Derocles
et al., 2018; Faust and Raes, 2012). We then extended the definition of
these hypotheses to include the ecological process of exclusion, whereby
the action of one species can cause the exclusion of the other, showing a
marked increase in the power to discriminate true interactions. This
indicates that our simple generic interaction hypotheses are only one
representation of ecological interaction and could be further improved to
infer interaction networks which better reflect the ecological reality of
microbial interactions. The work of Bohan et al. (2011) showed that an
A/ILP predation hypothesis, which included species traits, produced
explainable invertebrate food webs. The networks that are inferred by
A/ILP are therefore dependent upon and reflect the quality of our
ecological knowledge and theory for the hypothesis of interaction.
Similarly, the hypotheses of interactions can be potentially expanded to

include the sample abiotic conditions. Our work uses randomly taken
samples obtained from the same vineyard at the same time to infer inter-
actions. This hinders the possibility of introducing apparent interactions
caused by abiotic factors (Derocles et al., 2018) in the inferred networks. In
other cases, where the abiotic effects are more likely to cause a disruption
on the inference, the introduction of known abiotic factors to the
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hypotheses of interaction could allow to improve the inference. This
would require, however, to correctly identify and measure such factors,
adding new biases to the process.
There is no standard dataset in microbial ecology for evaluating net-

work inference tools (Röttjers and Faust, 2018). We used simulation
models to generate synthetic datasets of ecological-like interactions to
evaluate and test the combined performance of InfIntE and our simple
ecological rules. While these datasets are simplified approximations of the
different typologies of interaction (Faust and Raes, 2012), our analysis
suggests that the I statistic, computed in InfIntE, was able to discriminate
interactions of different types accurately where sufficient samples were
available. The sensitivity of inference to sample size is a matter of con-
siderable debate in the literature (Hirano and Takemoto, 2019). For
simulated datasets, we found that InfIntE network inference stabilised at
around 60 samples. The strength of the simulated interactions seemed not
to have an important effect on the performance of the A/ILP inference. At
the point where interactions were strong enough to be detected, further
increases of strength did not improve the overall detection accuracy.
Where the number of samples was large enough, InfIntE and our

interaction hypotheses could detect simulated interactions with an accuracy
comparable to SparCC and SPIEC-EASI that use correlation-like statistics.
Both SparCC and SPIEC-EASI can detect interactions from 20 samples,
suggesting that they may infer association networks at reduced sampling
effort, but with the need for subjective expert interpretation. The InfIntE
approach detects the simulated interactions with a probability similar to
those that SparCC and SPIEC-EASI infer a possible association of type
unknown. Moreover, the InfIntE approach does this with many fewer false
positives than SparCC and a similar level of false positives to SPIEC-EASI.
Direct classification by InfIntE is dependent upon the type of interaction
simulated, however. Competition and amensal interactions, which can
cause exclusion of OTUs, present difficulties of detection and classification.
This result is consistent with the findings of Weiss et al. (2016), who found
that the detection of simulated detrimental interactions for all interaction
inference tools is difficult due to the loss of information that comes with
exclusion. InfIntE detects detrimental interactions less well than SPIEC-
EASI, and while incorporating exclusion in the hypothesis of interaction
improves accuracy of detection, InfIntE has lower performance. We note,
however, that those competition interactions that are detected by InfIntE
are classified correctly with a high probability and a near zero rate of false
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positives. This suggests that where competition interactions are detected
and classified in a dataset, classification should be accurate even though
some competition interactions may not be detected. In general, given this
early stage in the development of A/ILP approaches for learning microbial
interactions, the InfIntE approach detects interactions to an accuracy
similar to SparCC and SPIEC-EASI, and does so with the benefit of direct,
automatic classification.
Using InfIntE on real metabarcoding data for the fungal microbiome of

grapevine leaves produced networks that varied between the nine vine-
yards of the dataset. Only one interaction was common to all nine vine-
yards. This result is consistent with the few consensus associations that have
been found among vineyards in previous works using correlation-based
tools like SparCC or SPIEC-EASI (Barroso-Bergadà et al., 2021). Each
network showed a diversity of interaction types, including interactions that
difficult to observe using classical ecological approaches. The most fre-
quently found interaction types were classified as commensalism and
competition interactions, likely based on energy transfer chains
(Tshikantwa et al., 2018) or the exploitation of resources, such as space
(Lloyd and Allen, 2015). Predation interactions were rarely classified, and
this may be due to problems of detection with this type of interaction being
masked by other interaction types (Derocles et al., 2018). The inclusion of
qPCR data for the grapevine pathogen, P. viticola, allowed the prediction
of subnetworks centred on the pathogen, with a view to understanding its
ecology and the potential for management using microbial biocontrol
(Koledenkova et al., 2022). A total of 14 fungal taxa were hypothesised to
be antagonistic to P. viticola, with the predominant interactions inferred
being of competition and more rarely amensalism. The list of potential
antagonists included five taxa identified previously in the literature as
P. viticola antagonists (Bakshi et al., 2001; Duhan et al., 2021; Ghule et al.,
2018; Harm et al., 2011; Musetti et al., 2007, 2006). Six of the remaining
taxa have also been proposed as biocontrol agents of other pathogens in
different foliar systems. InfIntE proposed Mycosphaerella tassiana and two
species from the Filobasidium genus as potential antagonists that are cur-
rently unknown. These literature validations give us some confidence that
the InfIntE approach correctly classifies interactions, allowing us to unravel
an approximation of the dark web of microbial interactions and the
pathobiome.
Our InfIntE approach introduces the use of explainable machine

learning to microbial interaction inference. Explainable machine learning
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has had a limited use in ecology due, at least in part, to its relatively
intense computational requirements and lower robustness to noise in
comparison to statistical learning. The duration of an explainable
approach increases exponentially with the size of the dataset, limiting
interactivity and scale of the learning that can be done. Moreover,
explainable machine learning approaches have been largely restricted to
researchers in the field of logic with its distinct theoretical framework and
suite of methodologies. InfIntE uses a new implementation of A/ILP
called PyGol, which is available as a Python library (Varghese et al.,
2022). Ecologists are more familiar with Python, facilitating the use of
Pygol. PyGol is also much faster than previous A/ILP implementations
and appears more robust to noise in datasets. This has reduced the run
time for explainable machine learning, from several days to a few hours,
for 60 samples and 80 OTUs. Most importantly, this promotes a much
more interactive experimental approach to the inference, because the
time costs of mistakes in coding are much lower. A/ILP allows other
sources of information, such as from databases like Funguild or Faprotax,
and functional ecological descriptions in place of taxonomy, to be
included in the logical hypotheses. This would lead to greater descriptive
precision, potentially improving further the inference process and our
understanding of these Dark Webs.
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